
Multi-Agent Programming Contest

MASSim Server Manual

(2012 Edition)

http://www.multiagentcontest.org/2012/

Tristan Behrens Jürgen Dix Michael Köster
Federico Schlesinger

July 20, 2012

1 Starting MASSim

You can start the MASSim server by invoking this:

$ ./startServer.sh

You will then be prompted to choose a simulation.
In parallel you can also start the monitor which will allow you to observe

the current simulation. The monitor can be invoked like this:

$ ./startMarsMonitor.sh

Note, however, this monitor provides you with complete information. Your
agents on the other hand do not have access to complete information.

The monitor also stores the match on hard disk. You can view these files by
invoking:

$ ./startMarsFileViewer.sh /path/where/the/files/are

For Microsoft Windows we suggest that you install Cygwin1 in order to run
the MASSim-software taking advantage of the shell scripts.

2 Configuring MASSim

When starting MASSim, you must provide a configuration file to the server.
Configuration files are XML-based, and a set of configuration files is already
available in the scripts/conf sub-folder of your MASSim installation. A de-
tailed explanation of the configuration file is given next.

1http://www.cygwin.com/

1



<?xml version="1.0" encoding="UTF-8"?>

<conf backuppath="backup"

launch-sync-type="key"

reportpath="./backup/"

time-to-launch="10000"

tournamentmode="0"

tournamentname="Mars2012">

<simulation-server>

<network-agent backlog="10" port="12300"/>

</simulation-server>

<match>

<simulation ...>

...

</simulation>

...

<simulation ...>

...

</simulation>

</match>

...

<match>

...

</match>

<accounts>

...

</accounts>

</conf>

Figure 1: General structure of the MASSim configuration-file.

2.1 General Configuration

The general structure of the configuration file is depicted in Fig. 1.
The attributes of the conf tag are the following:

• backuppath - The path where important information of each simulation
step is stored.

• launch-sync-type - Determines whether the server is started by pressing
ENTER or after a certain time defined in time-to-launch. The value
can be key or timer.

• reportpath - The path where the overall tournament results are stored.

• time-to-launch - The time for the option timer.

2



• tournamentmode - Defines the structure of the tournament. 0 sets it to
a round robin tournament. 1 is used when only one team should play
against all others.

• tournamentname - Sets the tournament name to this value.

The simulation-server tag has one child which has two attributes. backlog
defines the time intervals (in milliseconds) for printing the debug messages to
stdout or stderr respectively. The attribute port sets the port of the server.

A configuration can have one or more match tags, that will be instantiated
depending on the tournamentmode attribute.

2.2 Simulation Configuration

The simulation tag is used to specify the scenario to be run, along with all the
parameters that affect the simulation.

The attributes available for the simulation tag are the following:

• id - An identifier for the simulation.2

• simulationclass - The name of the main Java class implementing the
scenario. For the 2012 Mars Scenario, the class that must be used here is
massim.competition2012.GraphSimulation.

• configurationclass - The name of the Java class that will hold the
configuration data specified in the configuration child tag. For 2012
Mars Scenario, the class to use is
massim.competition2012.GraphSimulationConfiguration.

• file-simulationlog - The path where simulation logs are stored.

• rmixmlobsserverhost - The host to which the scenario monitor should
connect.

• rmixmlobsserverport - The port to which the scenario monitor should
connect.

• rmixmlobserver - The name of the Java class that will translate the
current scenario state into XML data, and send it via RMI to the scenario
monitor when connected. For the 2012 Mars Scenario, the class to use is
massim.competition2012.GraphSimulationRMIXMLDocumentObserver.

A skeleton XML for the simulation tag is shown in Fig. 2. It has two
children: configuration and agents. The configuration part is scenario-
specific, and must be in correspondence with the configurationclass specified
in the simulation attributes. For the 2012 Mars scenario, the configuration

attributes are the following:

2To distinguish among different instances of the simulation executed during a tournament,
this identifier will be appended to the names of the teams taking part in that instance.

3



<simulation ...>

<configuration ...>

<actions>

<action .../>

<action .../>

...

</actions>

<roles>

<role ...>

<actions>

<action .../>

<action .../>

...

</actions>

<actionsDisable>

<action .../>

<action .../>

...

</actionsDisable>

</role>

</roles>

<achievements>

<achievement .../>

</achievements>

</configuration>

<agents>

<agent ...>

<configuration .../>

</agent>

<agent ...>

<configuration .../>

</agent>

...

</agents>

</simulation>

Figure 2: Simulation XML structure

4



• maxNumberOfSteps - The number of steps that the simulation must run
until determining a winner.

• numberOfAgents - The total number of agents that take part in the sim-
ulation run.

• numberOfTeams - The number of teams that take part in the simulation
run.

• agentsPerTeam - The number of agents composing each team in the sim-
ulation run.

• numberOfNodes - The size of the randomly generated map, in terms of
number of nodes (vertices).

• gridWidth, gridHeight - Affect the map-generation algorithm. Inter-
nally, nodes are created as being situated on a grid, and then edges are
calculated according to this grid. gridWidth∗gridHeight must be greater
than numberOfNodes.

• cellWidth - This parameter is not used from MASSim itself, but is given
to the monitor to facilitate the visualization. It stands for the distance
(measured in pts) between two adjacent points in the grid.

• minNodeWeight, maxNodeWeight - The minimum and maximum possible
value for the weights of the nodes (randomly assigned).

• minEdgeCost, maxEdgeCost - The minimum and maximum possible value
for the costs of the edges (randomly assigned).

• nodeWeighting - The nodes’ weight is computed out of a random and a
gradient component. This parameter is the percentage of the random one
(e.g. 100 would be a fully random assignment, whereas 0 would lead to a
fully gradient generation).

• randomSeed - A long integer used as seed for the random map generation.
If none is specified, the current system-time in milliseconds will be used
instead.

• mapGenerator - The type of generator that is to be used for building the
map. Currently availabe are GraphGeneratorTriangulation as well as
GraphGeneratorTriangulationBalanced, while the latter will generate
symmetrical maps.

2.2.1 Actions

The actions section is used to specify the costs that actions may imply for the
agents attempting to execute them. There must be one action tag for each
action. Thus, the name attribute must be one of the following: recharge, goto,
attack, parry, probe, survey, inspect, repair or buy.

5



In the general case, the rest of the attributes to be specified here represent
the costs of attempting to execute that action in different situations. An action
can cost energy, health, and achievement points (money). The costs can
vary depending on the success or failure of the action, and also on whether the
agent is in a normal or disabled3 state, so attributes for all the combinations
can be specified.4 The names of these attributes are:

• energyCost

• healthCost

• pointsCost

• energyCostFailed

• ...

• energyCostDisabled

• ...

• energyCostFailedDisabled

Two special cases are the actions recharge and goto. For the recharge

action, the values represent the percentage of the maximum energy and health

that gets recovered. “Failure” in this particular case means that the agent has
been attacked, and thus the health and energy recovering rates can be specified
to be different.

The energy cost of a successful goto action is actually determined by the cost
of the traversed edge. Therefore, the energyCost and energyCostDisabled

specified here are considered as factors, that are multiplied by the edge cost.
The cost for the Failed cases, on the other hand, are constants, as with the
rest of the actions.

A thing to note here is that some costs can be specified to be negative values,
e.g. if an agent should recover some energy when it was not able to perform a
particular action.

2.2.2 Roles

The roles section defines the different roles that agents participating in the
simulation will assume. A role encompasses all the internal characteristics of
the agent and the set of actions that the agent is allowed to perform, both when
in normal state and when disabled. The following attributes should be specified
for each role:

• name - The name by which this role is referenced.

3An agent is considered to be in disabled state when its current health is 0
4Not all combinations make sense, and some of them may be just ignored by the server.

Nevertheless, they are provided for notation consistency

6



• maxEnergy - The initial upper limit for the energy of the agent.

• maxBuyEnergy - The upper limit for maxEnergy that can be reached when
attempting to perform the buy action with param="battery".

• rateBuyEnergy - The amount by which maxEnergy is increased when suc-
cessfully performing the buy action with param="battery".

• maxEnergyDisabled - The initial upper limit for the energy of the agent
when disabled.

• rateBuyEnergyDisabled - The amount by which maxEnergyDisabled is
increased when successfully performing the buy action with param="battery".

• maxHealth - The initial upper limit for the health of the agent.

• maxBuyHealth - The upper limit for maxHealth that can be reached when
attempting to perform the buy action with param="shield".

• rateBuyHealth - The amount by which maxHealth is increased when suc-
cessfully performing the buy action with param="shield".

• strength - The initial strength of the agent.

• maxBuyStrength - The upper limit for strength that can be reached when
attempting to perform the buy action with param="sabotageDevice".

• rateBuyStrength - The amount by which strength is increased when
successfully performing the buy action (with param="sabotageDevice").

• visRange - The initial visibility range of the agent.

• maxBuyVisRange - The upper limit for visRange that can be reached when
attempting to perform the buy action with param="sensor".

• rateBuyVisRange - The amount by which visRange is increased when
successfully performing the buy action (with param="sensor").

The actions and actionsDisable sections of the role definition expect a
list of action tags with only one attribute: the name of an action. The actions
listed in these sections are the only actions that will be enabled for agents having
this role when in normal or disabled state respectively.

2.2.3 Achievements

The achievements that will yield achievement points for the teams are defined
here. Each achievement has four attributes: a (preferably unique) name, a class

stating the type of achievement, a quantity needed to reach the achievement,
and the number of points that the achievement yields. Six different classes of
achievements are implemented:

7



• probedVertices - The quantity means the number of different nodes
that a team needs to probe.

• surveyedEdges - The quantity means the number of different edges that
a team needs to survey.

• inspectedAgents - The quantity means the number of different oppo-
nent agents that a team needs to inspect.

• successfulAttacks - The quantity means the number of successful at-
tacks that a team needs to perform.

• successfulParries - The quantity means the number of successful par-
ries that a team needs to perform (only counted when the parrying agent
is actually attacked by an opponent).

• areaValue - The quantity means the score of a zone that a team needs
to build.

2.2.4 Agents

The agents part of the simulation configuration is where it is defined how
server-side teams are to be composed during the simulation. Agents defined here
will be matched with agents defined in the accounts section to be controlled
externally by the participants. This matching of agents varies in function of the
tournamentmode parameter explained in 2.1.

The attributes for the agent tag are:

• team - The server-side name of the team.

• agentclass - The name of main Java class implementing the agents. For
the 2012 Mars scenario, the class to use is
massim.competition2012.GraphSimulationAgent.

• agentcreationclass - The name of the Java class that will hold the
configuration parsed from the configuration child tag. For the 2012
Mars scenario, the class to use is
massim.competition2012.GraphSimulationAgentParameter.

The configuration child tag for the 2012 Mars scenario only has one at-
tribute: roleName, which refers to the name of one of the previously defined
roles.

2.3 Accounts Configuration

In the accounts section of the configuration file, one can configure the devel-
opers’ team that will participate in the tournament, and with which credentials
each developer-side agent will connect to MASSim to control its server-side
counterpart.

8



The actionclassmap has one attribute name and defines all available action
classes for the agent accounts. Each actionclass has a class attribute and an
id. An account is structured as follows:

• actionclassmap - Refers to the actionclassmap name that is used for this
account.

• auxtimeout - Additional timeout for messages. The purpose of this pa-
rameter is to give the agents some additional time to allow the server to
process the message.

• defaultactionclass - Sets the default action class.

• maxpacketlength - Defines the maximal length of on message.

• password - The password for the agent.

• team - The team name for the agent.

• timeout - The timout for messages.

• username - The user name of the agent.

3 Statistics Generation (NEW!)

MASSim now includes a new observer that generates statistics for each simu-
lation and delivers them as images. It can be activated in the file config.dtd
following this example:

<!ATTLIST simulation

...

statisticsobserver CDATA "massim.competition2012.GraphSimulationStatisticsObserver"

statisticsobserverpath CDATA "statistics"

>

This will activate the statistics-observer which will plot all the output to the
specified folder. Now follows as quick overview of the generated statistics:

Achievement-Points: The chart depicts the achievement-points of both teams
in every step of the current simulation. The points increase, when a team gets
an achievement and decrease, when the buy-action is used.

TEAMNAME ROLENAME Actions The chart show the actions of all
four agents of the respective role in the given team. Every bar represents one
action the role is allowed to use. The whole bar (green and red) relates to
the frequency the action was sent by the agents. The absolute and relative
numbers for this frequency are given in blue above the chart. The percentage
relates to all actions that were sent by this specific role’s agents in the current
team. The green part of the bar represents the number of succeeded actions,
that is actions which did not fail. Again, the number of succeeded actions is

9



given in green above the respective bar. The blue numbers under the bar give
relative frequencies of each action in relation to all actions that were sent by
every agent of the current team in the course of the simulation. Finally, if one
or more agents of this role try to send an action they aren’t allowed to use, this
fact is mentioned in the legend under the chart.

ACHIEVEMENTNAME-Achievements There is one chart for every cat-
egory of achievements. It shows, in which step which quantity of the respective
achievement was reached by all teams which participate in the current simula-
tion.

Summed Scores The chart depicts the summed score of each teams in each
step of the current simulation.

ZonesScores The chart depicts the ZonesScores of each teams in each step
of the current simulation. The ZonesScore derives from the number and value
of the currently dominated nodes.

ZonesScores and AchievementPoints This chart is just a combination of
both ZonesScores- and Achievement-Points-chart.

ZoneStabilities The chart depicts the ZoneStabilities of each teams in each
step of the current simulation. The ZonesStability increases for one team, if the
team can hold all conquered nodes over a longer period of time. If nodes are
lost, the value decreases.

10


