Multi-Agent Programming Contest
(2012 Edition)
Protocol Description

http://www.multiagentcontest.org/2012/

Tristan Behrens Jirgen Dix Jomi Hiibner
Michael Koster Federico Schlesinger

April 17, 2012

1 General Agent-2-Server Communication Prin-
ciples

The agents from each participating team will be executed locally (on the par-
ticipant’s hardware) while the simulated environment, in which all agents from
competing teams perform actions, runs on the remote contest simulation server.

Agents communicate with the contest server using standard TCP /TP stack
with socket session interface. The Internet coordinates (IP address and port) of
the contest server (and a dedicated test server) will be announced later via the
official contest mailing list.

Agents communicate with the server by exchanging XML messages. Mes-
sages are well-formed XML documents, described later in this document. We
recommend using standard XML parsers available for many programming lan-
guages for generation and processing of these XML messages. Note that ill-
formed messages, that is messages that do not comply to the message-syntax
outlined here, are ignored.

2 Communication Protocol Overview

Logically, the tournament consists of a number of matches. A match is a sequel
of simulations during which several teams of agents compete in several different
settings of the environment. However, from agent’s point of view, the tourna-
ment consists of a number of simulations in different environment settings and
against different opponents.

The tournament is divided into three phases:

1. the initial phase,



Server Agent

AUTH-REQUEST

AUTH-RESPONSE

Figure 1: The initial phase.

2. the simulation phase, and
3. the final phase.

During the initial phase, agents connect to the simulation server and identify
themselves by username and password (AUTH-REQUEST message). Credentials for
each agent will be distributed in advance via e-mail. As a response, agents re-
ceive the result of their authentication request (AUTH-RESPONSE message) which
can either succeed, or fail. After successful authentication, agents should wait
until the first simulation of the tournament starts.

Fig. 1 shows a picture of the initial phase (UML-like notation).

At the beginning of each simulation, agents of the two participating teams
are notified (SIM-START message) and receive simulation specific information.

In each simulation step each agent receives a perception about its environ-
ment (REQUEST-ACTION message) and should respond by performing an action
(ACTION message).

The agent has to deliver its response within the given deadline. The action
message has to contain the identifier of the action, the agent wants to perform,
and action parameters, if required.

Fig. 2 shows a picture of the simulation phase.

When the simulation is finished, participating agents receive a notification
about its end (SIM-END message) which includes the outcome of the simulation.

All agents which currently do not participate in a simulation should wait
until the simulation server notifies them about either 1) the start of a simulation,
they are going to participate in, or 2) the end of the tournament.

At the end of the tournament, all agents receive a notification (BYE message).
Subsequently the simulation server will terminate the connections to the agents.

Fig. 3 shows a picture of the final phase.

2.1 Reconnection

When an agent loses connection to the simulation server, the tournament pro-
ceeds without disruption, only all the actions of the disconnected agent are con-
sidered to be empty (skip). Agents themselves are responsible for maintaining



Server Agent

SIM-START

loop: Simulation Step Cycle
REQUEST-ACTION

ACTION

SIM-END

Figure 2: The simulation-phase.

Server Agent

BYE

Figure 3: The final phase.




Server Agent

AUTH-REQUEST

AUTH-RESPONSE

SIM-START

Figure 4: Reconnecting.

the connection to the simulation server and in a case of connection disruption,
they are allowed to reconnect.

Agents reconnect by performing the same sequence of steps as at the be-
ginning of the tournament. After establishing the connection to the simulation
server, it sends AUTH-REQUEST message and receives AUTH-RESPONSE. After suc-
cessful authentication, the server sends SIM-START message to an agent. If an
agent participates in a currently running simulation, the SIM-START message
will be delivered immediately after AUTH-RESPONSE. Otherwise an agent will
wait until a next simulation in which it participates starts. In the next sub-
sequent step when the agent is picked to perform an action, it receives the
standard REQUEST-ACTION message containing the perception of the agent at
the current simulation step and simulation proceeds in a normal mode.

Fig. 4 shows a picture of the reconnection.

2.2 XML Messages Description
2.2.1 XML message structure

XML messages exchanged between server and agents are zero terminated UTF-8
strings. Each XML message exchanged between the simulation server and agent
consists of three parts:

e Standard XML header: Contains the standard XML document header

<?xml version="1.0" encoding="UTF-8"7>

e Message envelope: The root element of all XML messages is <message>.
It has attributes the timestamp and a message type identifier.

e Message separator: Note that because each message is a UTF-8-zero-
terminated string, messages are separated by nullbyte.



The timestamp is a numeric string containing the status of the simulation
server’s global timer at the time of message creation. The unit of the global
timer is milliseconds and it is the result of standard system call ”time” on the
simulation server (measuring number of milliseconds from January 1st, 1970
UTC). The message type identifier is one of the following values: auth-request,
auth-response, sim-start, sim-end, bye, request-action, action.

Messages sent from the server to an agent contain all attributes of the root
element. However, the timestamp attribute can be omitted in messages sent
from an agent to the server. In the case it is included, server silently ignores it.

Example of a server-2-agent message:

<message timestamp="10001980000000" type="request-action">
<!-- optional data -->
</message>

Example of an agent-2-server message:

<message type="auth-request">
<!-- optional data -->
</message>

Depending on the message type, the root element <message> can contain
simulation specific data.

2.2.2 AUTH-REQUEST (agent-2-server)

When an agent connects to the server, it has to authenticate itself using the
username and password provided in advance by the contest organizers. This
way we prevent the unauthorized use of connections belonging to a contest
participant. AUTH-REQUEST is the very first message an agent sends to the
contest server.

The message envelope contains one element <authentication> without
subelements. It has two attributes username and password.

Example:

<?7xml version="1.0" encoding="UTF-8" standalone="no"7>
<message type="auth-request">

<authentication password="1" username="al"/>
</message>

2.2.3 AUTH-RESPONSE (server-2-agent)

Upon receiving AUTH-REQUEST message, the server verifies the provided creden-
tials and responds by a message AUTH-RESPONSE indicating success, or failure of
authentication. It has one attribute timestamp that represents the time when
the message was sent.



The envelope contains one <authentication> element without subelements.
It has one attribute result of type string and its value can be either "ok", or
"fail". Example:

<?7xml version="1.0" encoding="UTF-8" standalone="no"7>

<message timestamp="1297263037617" type="auth-response">
<authentication result="ok"/>

</message>

2.2.4 SIM-START (server-2-agent)

The simulation starts by notifying the corresponding agents about the details
of the starting simulation. This notification is done by sending the SIM-START
message.

The data about the starting simulation are contained in one <simulation>
element with the following attributes:

e the number of edges,

the number of vertices,

the respective agent’s role’,

e the id of the simulation, and
e the number of steps the simulation will last.

One step involves all agents acting at once. Therefore if a simulation has n
steps, it means that each agent will receive n REQUEST-ACTION messages during
the simulation (assuming a stable connection to the server).

Example:

<?7xml version="1.0" encoding="UTF-8" standalone="no"7>

<message timestamp="1297263004607" type="sim-start">
<simulation edges="47" id="0" steps="500" vertices="20" role="Explorer"/>

</message>

2.2.5 SIM-END (server-2-agent)

Each simulation lasts a certain number of steps. At the end of each simulation
the server notifies agents about its end and its result.

The <sim-result>-tag has two attributes. ranking is the ranking of the
team and score is the final score.

Example:

IThis is new in this version.



<?xml version="1.0" encoding="UTF-8" standalone="no"?7>

<message timestamp="1297269179279" type="sim-end">
<sim-result ranking="2" score="9"/>

</message>

2.2.6 BYE (server-2-agent)

At the end of the tournament the server notifies each agent that the last sim-
ulation has finished and subsequently terminates the connections. There is no
data within the message envelope of this message.

Example

<?xml version="1.0" encoding="UTF-8"7>
<message timestamp="1204978760555" type="bye"/>

2.2.7 REQUEST-ACTION (server-2-agent)

In each simulation step the server asks the agents to perform an action and
sends them the corresponding perceptions.

This message, due to its complexity, is best explained using an example.
Note, however, that the following message is an artificial one, which has never
been sent by the server:

<?7xml version="1.0" encoding="UTF-8" standalone="no"7>
<message timestamp="1297263230578" type="request-action">
<perception deadline="1297263232578" id="201">
<simulation step="200"/>
<self energy="19" health="9" lastAction="skip"
lastActionParam=""
lastActionResult="successful" maxEnergy="19"
maxEnergyDisabled="9" maxHealth="9" position="vertex4"
strength="5" visRange="5" zoneScore="27"/>
<team lastStepScore="27" money="1" score="4270"
zonesScore="26">
<achievements>
<achievement name="area20"/>

</achievements>
</team>
<visibleVertices>
<visibleVertex name="vertex19" team="none"/>

</visibleVertices>
<visibleEdges>
<visibleEdge nodel="vertex0" node2="vertexl1l"/>




</visibleEdges>
<visibleEntities>
<visibleEntity name="b5" team="B" node="vertex0"
status="normal"/>

</visibleEntities>
<probedVertices>
<probedVertex name="vertex18" value="4"/>
</probedVertices>
<surveyedEdges>
<surveyedEdge nodel="vertex3" node2="vertex7" weight="2"/>

</surveyedEdges>

<inspectedEntities>
<inspectedEntity energy="8" health="9" maxEnergy="8"
maxHealth="9" name="b5" node="vertexl10" role="role2"
strength="6" team="B" visRange="2"/>

</inspectedEntities>
</perception>
</message>

Now, it is not necessary to elaborate on the nesting of the tags, which is
obvious from the example. We will only focus on the relevant tags.

e <perception> has two attributes

— deadline denotes the latest moment in time when the server will
accept an action, and

— id represents the action-id, that is the id, that is supposed to be
added to the action-message.

e <simulation> has a step-attribute, that denotes the current step of the
simulation.

e <self> represents the state of the vehicle, with the attributes

— energy, which is the current energy:.

— health, which is the current health,

lastAction, which is the last action that has been performed,

lastActionParam, which is the parameter of last action that has
been performed?,

2This is new in this version.



— lastActionResult, which is the outcome of the last action, with
precise semantics, 3

— maxEnergy, which is the maximum energy,

— maxEnergyDisabled, which is the maximum energy, when the vehicle
is disabled,

— maxHealth, which is the maximum health,

— position, which is the vehicle’s current position,
— strength, which is the strength,

— visRange, which is the visibility range, and

— zoneScore, which is the value of the zone that the vehicle is part of.
e team represents the state of the vehicles team, with the attributes

— lastStepScore, which is the score of the team in the last step,
— money, which is the current amount of money the team has,
— score, which is the overall score of the team, and

— zonesScore, which is the sum of the values of all zones occupied by
the team.

Note, at this point, that lastStepScore is the sum of money and zonesScore

from the last step. Note also that score is the sum of all 1astStepScores

e <achievement> is an achievement, whose name is indicated by the name-
attribute.

e <yisibleVertex> represents a visible vertex, whose name is indicated by
the name-attribute, which denotes its identifier, and by the team-attribute,
representing the team occupying the vertex.

e <visibleEdge> denotes a visible edge, its vertices are represented by the
attributes nodel and node?2.

e <visibleEntity> represents a visible entity, denoted by the name-attribute.
The status of the agent can be either normal or disabled.

e <probedVertex> is a probed vertex, the name-attribute is the vertex’s
name and the value is the vertex’s value.

e <surveyedEdge> is a surveyed edge, nodel and node2 denote the adjacent
vertices, and weight represents the weight.

e <inspectedEntity> represents an inspected vehicle, the attributes are

— energy, which is the current energy of the vehicle,

— health, which is the current health of the vehicle,

3This is new in this version.



— maxEnergy, which is the maximum energy of the vehicle,

— maxHealth, which is the maximum health,

— name, which is the vehicle’s name

— node, which is the name of the vertex the vehicle is standing on,
— role, which is the vehicles role,

— strength, which is the vehicle’s strength,

— team, which is the vehicle’s team, and

— visRange, which is the vehicle’s visibility range.

2.2.8 ACTION (agent-2-server)

The agent should respond to the REQUEST-ACTION message by an action it
chooses to perform.

The envelope of the ACTION message contains one element <action> with
the attributes type and id. The attribute type indicates an action the agent
wants to perform. It contains a string value which can be one of the following
strings:

e "goto" with an obligatory attribute param, moves the entity to another
vertex, whereas the attribute denotes the vertex,

e "attack" with an obligatory attribute param, attacks another entity, whereas
the attribute denotes the entity-to-be-attacked,

e "parry" parries any attack,

e '"probe" probes the current vertex,

e "survey" surveys some visible edges,

e "inspect" inspects some visible entities,

e "repair" with an obligatory attribute param, repairs another entity, whereas
the attribute denotes the entity-to-be-repaired,

e "buy" with an obligatory attribute param, buys an item, whereas the
attribute denotes the item-to-be-bought,

e "recharge" recharges, and
e "skip" does nothing.

Note, however, that the scenario description contains the precise semantics
of the actions.
Here is an example of a goto-action:

10



<?xml version="1.0" encoding="UTF-8"7>
<message type="action">

<action type='"goto" param="vertexl">
</message>

Here is an example of a attack-action:

<?xml version="1.0" encoding="UTF-8"7>
<message type="action">

<action type="attack" param="a2"/>
</message>

Here is an example of a probe-action:

<?xml version="1.0" encoding="UTF-8"7>
<message type="action">

<action type="probe"/>
</message>

Here is an example of a survey-action:

<?7xml version="1.0" encoding="UTF-8"7>
<message type="action">

<action type="survey"/>
</message>

Here is an example of a inspect-action:

<?xml version="1.0" encoding="UTF-8"7>
<message type="action">

<action type="inspect"/>
</message>

Here is an example of a parry-action:

<?7xml version="1.0" encoding="UTF-8"7>
<message type="action">

<action type="parry"/>
</message>

Here is an example of a recharge-action:

<?xml version="1.0" encoding="UTF-8"7>
<message type="action">

<action type="recharge"/>
</message>

11




Here is an example of a repair-action:

<?xml version="1.0" encoding="UTF-8"7>
<message type="action">

<action type="repair" param="b2"/>
</message>

Here is an example of a buy-action:

<?xml version="1.0" encoding="UTF-8"7>
<message type="action">

<action type="buy" param="battery"/>
</message>

The attribute id is a string which should contain the REQUEST-ACTION mes-
sage identifier. The agents must plainly copy the value of id attribute in
REQUEST-ACTION message to the id attribute of ACTION message, otherwise
the action message will be discarded.

Note that the corresponding ACTION message has to be delivered to the time
indicated by the value of attribute deadline of the REQUEST-ACTION message.
Agents should therefore send the ACTION message in advance before the indi-
cated deadline is reached so that the server will receive it in time.

Example:

<?7xml version="1.0" encoding="UTF-8"7>
<message type="action">

<action id="70" type="skip"/>
</message>

2.2.9 Action Results

A part of the REQUEST-ACTION message is the result of the previously performed
action. Usually three attributes will be provided*: lastAction is the action
name sent by the agent, lastActionParam is the action parameter sent by the
agent, and lastActionResult is the outcome of the action.

e Random failure of an action: lastActionResult is "failed_random".

e No action received: lastAction is "noAction" and lastActionResult is
"failed".

e Received an unrecognized action: lastAction is "unknownAction" and
lastActionResult is "failed".

e skip: lastActionResult is always "successful".

4This is new in 2012.

12



attack: lastActionResult is
— "failed_away" when recipient is in a different node and therefore
can’t be reached by the attack, and
— "failed_parry" when recipient parries (previously: "parried").

buy: lastActionResult is "failed_limit" when an agent tries to buy
some item for which it has already reached the max allowed.

repair: lastActionResult is "failed_away" when trying to repair an
agent that is not longer on the same node.

The other actions have more specific failure messages. lastActionResult
is:

— "failed resources" when the resources for performing the action
were insufficient,

— "fajiled_attacked" when the agent was successfully attacked, which
prevented realization of its action,

— "fajiled_role" when the agent is not allowed to perform this action
because of its role,

— "failed status" when the agent is disabled and only allowed to
perform that action when enabled, and

— "failed_wrong param" when the parameter provided for the action
is erroneous (previously "wrongParameter").

13



