Multi-Agent Programming Contest
MASSim Server Manual
(2013 Edition)

http://www.multiagentcontest.org/2013/

Jirgen Dix Michael Koster Federico Schlesinger
June 6, 2013

New in 2013: Differences between the last year and 2013 are now marked
with boxes.

Contents
1 Starting the Programs| 2
L1 MASSIm Serverl 2
L2 MASSIm Monitorl oo 2
L3 MASSIm Web Server]o 2
2 Configuring MASSim| 3
2.1 General Configuration| 3
2.2 Simulation Configuration| 4
B2ZT Actiond . . - -« v o 8
22 Roled 9
2.2.3 Achievementsl Lo 10
............................. 10
2.3 Accounts Configuration| 11
B Statistics G ol 11

http://www.multiagentcontest.org/2013/

1 Starting the Programs

For Microsoft Windows we suggest that you install MSYﬂH or Cygwirﬂ in order
to run the MASSim-software taking advantage of the shell scripts.

1.1 MASSim Server
You can start the MASSim server by invoking this:

$./startServer.sh

You will then be prompted to choose a simulation. The server generates XML
files, statistics etc. Please have a look at the folders (output and backup that
were generated during a run.

1.2 MASSim Monitor

In parallel you can also start the monitor which will allow you to observe the
current simulation. The monitor can be invoked like this:

$./startMarsMonitor.sh

The monitor has currently two different options for the visualization. Please
have a look at the scenario description for details. Also note, this monitor
provides you with complete information. Your agents on the other hand do not
have access to complete information.

The monitor also stores the match on hard disk. You can view these files by
invoking;:

$./startMarsFileViewer.sh /path/where/the/files/are

1.3 MASSim Web Server
(New in 2013: We have a working install script J

For the tournament we always provide a web server that is running on an
Apache using Apache Tomcat and RMI as well as XML and XSLT. This server
is not needed for the development of your multi-agent system, however, for the
sake of completeness we provide some information how to install it. A install
script that explains the procedure is placed in scripts/tools/. If you have
any questions please contact the organizers.

Thttp:/ /www.mingw.org/wiki/MSYS
2http:/ /www.cygwin.com/

New in 2013:

‘We mention the

files explicitly

2 Configuring MASSim

When starting MASSim, you must provide a configuration file to the server.
Configuration files are XML-based, and a set of configuration files is already
available in the scripts/conf sub-folder of your MASSim installation. A de-
tailed explanation of the configuration file is given next.

2.1 General Configuration

The general structure of the configuration file is depicted in Fig. [1l Note, how-
ever, that we use some additional XML features that allows us to use more
than one file and reuse parts of the XML in different parts of the configuration.
Therefore, you have to look into the main file as well as into the corresponding
config.dtd file.

New in 2013: You can set a starting time with time now. Also, a
debug-level was introduced. Additionally, we describe some parameters

in more detail.

<?7xml version="1.0" encoding="UTF-8"7>
<conf backuppath="backup"
launch-sync-type="key"
reportpath="./backup/"
time="14:05"
time-to-launch="10000"
tournamentmode="0"
tournamentname="Mars2013 "
debug-level="normal" >
<simulation-server>
<network-agent backlog="10" port="12300"/>
</simulation-server>
<match>
<simulation ...> ... </simulation>

<simulation ...> ... </simulation>
</match>

<match>
</match>
<accounts>

</accounts>
</conf>

Figure 1: General structure of the MASSim configuration-file.

Tag: conf. The attributes of the conf tag are the following:

e backuppath - The path where important information of each simulation
step is stored.

e launch-sync-type - Determines whether the server is started by pressing
ENTER or after a certain time defined in time-to-launch or at time
point (defined by time). The value can be key, timer or time.

e reportpath - The path where the overall tournament results are stored.
e time - The time point for the option time.
e time-to-launch - The time for the option timer.

e tournamentmode - Defines the structure of the tournament. 0 sets it to
a round robin tournament. 1 is used when only one team should play
against all others. Finally, 2 allows one to set up all matches manually.
You have to add some code similar to the one in Fig. 2| after </match> to
make it work.

<manual-mode>
<match teaml="A" team2="B"/>
<match team1="A" team2="C"/>
<match team1="B" team2="D"/>
</manual-mode>

Figure 2: Manual mode.

e tournamentname - Sets the tournament name to this value.

e debug-level - Changes the verbosity of the output on shell. Allowed
values: debug, normal, critical, error.

Tag: simulation-server. The simulation-server tag has one child which
has two attributes. backlog defines the time intervals (in milliseconds) for
printing the debug messages to stdout or stderr respectively. The attribute
port sets the port of the server.

Tag: match. A configuration can have one or more match tags, that will be
instantiated depending on the tournamentmode attribute.

Tag: accounts. Finally, the accounts tag contains the details about the
agents that are allowed to take part in the matches.

2.2 Simulation Configuration

The simulation tag is used to specify the scenario to be run, along with all the
parameters that affect the simulation.

New in 2013:

Time intro-

duced.

New in 2013:
Mode 2 added

New in 2013:

New in 2013:

Debugging

functionality
added.

Tag:

simulation. The attributes available for the simulation tag are the

following:

id - An identifier for the simulation. To distinguish among different in-
stances of the simulation executed during a tournament, this identifier will
be appended to the names of the teams taking part in that instance.

simulationclass - The name of the main Java class implementing the
scenario. For the 2013 Mars Scenario, the class that must be used here is
massim.competition2013.GraphSimulation.

configurationclass - The name of the Java class that will hold the
configuration data specified in the configuration child tag. For 2013
Mars Scenario, the class to use is
massim.competition2013.GraphSimulationConfiguration.

rmixmlobsserverhost - The host to which the scenario monitor should
connect.

rmixmlobsserverport - The port to which the scenario monitor should
connect.

rmixmlobserver - The name of the Java class that will translate the
current scenario state into XML data, and send it via RMI to the scenario
monitor when connected. For the 2013 Mars Scenario, the class to use is
massim.competition2013.GraphSimulationRMIXMLDocumentObserver.

xmlstatisticsobserver - This is needed for the Apache Tomcat Connectio
Status and Results page.

rmixmlobserverweb - This is needed for the Apache Tomcat Current
Simulation and Results page.

visualisationobserver - This defines the class for the visualization.

visualisationobserver-outputpath - This defines the output path for
the visualization files.

xmlobserver - This allows one to store the results of a simulation as xml
file.

xmlobserverpath - This is the path for the xmlobserver.

statisticsobserver - This generates a lot of useful statistics about a
simulation.

statisticsobserverpath - This sets the path for the statisticsobserver.

New in 2013:
Added.

New in 2013:
Added.

New in 2013:
Added.

(o . .
New in 2013:
Added.

New in 2013:
Added.

New in 2013:
Added.

S —
New in 2013:

Added.

New in 2013:
Added.

<simulation ...>
<configuration ...>
<actions>
<action .../>
<action .../>

</actions>
<roles>
<role ...>
<actions>
<action .../>
<action .../>

</actions>

<actionsDisable>
<action .../>
<action .../>

</actionsDisable>
</role>
</roles>
<achievements>
<achievement .../>
</achievements>
</configuration>
<agents>
<agent ...>
<configuration .../>
</agent>
<agent ...>
<configuration .../>
</agent>
</agents>
</simulation>

Figure 3: Simulation XML structure

A skeleton XML for the simulation tag is shown in Fig. It has two
children: configuration and agents. The configuration part is scenario-
specific, and must be in correspondence with the configurationclass specified
in the simulation attributes. For the 2013 Mars scenario, the configuration
attributes are the following:

e maxNumberOfSteps - The number of steps that the simulation must run
until determining a winner.

e numberOfAgents - The total number of agents that take part in the sim-
ulation run.

e number0fTeams - The number of teams that take part in the simulation
run.

e numberOfNodes - The size of the randomly generated map, in terms of
number of nodes (vertices).

e gridWidth, gridHeight - Affect the map-generation algorithm. Inter-
nally, nodes are created as being situated on a grid, and then edges are
calculated according to this grid. gridWidthxgridHeight must be greater
than numberOfNodes.

e cellWidth - This parameter is not used from MASSim itself, but is given
to the monitor to facilitate the visualization. It stands for the distance
(measured in pts) between two adjacent points in the grid.

e minNodeWeight, maxNodeWeight - The minimum and maximum possible
value for the weights of the nodes (randomly assigned).

e minEdgeCost, maxEdgeCost - The minimum and maximum possible value
for the costs of the edges (randomly assigned).

e nodeWeighting - The nodes’ weight is computed out of a random and a
gradient component. This parameter is the percentage of the random one
(e.g. 100 would be a fully random assignment, whereas 0 would lead to a
fully gradient generation).

e randomSeed - A long integer used as seed for the random map generation. New in 2013

If none is specified, the current system-time in milliseconds will be used
instead. If you want to debug your multi-agent system, you can fix this
seed to a constant to always use the same map.

Very useful for

debugging.

e mapGenerator - The type of generator that is to be used for building the
map. Currently availabe are GraphGeneratorTriangulation as well as

GraphGeneratorTriangulationBalanced, while the latter will generate
symmetrical maps. Additionally, we added GraphGeneratorTriangBalOpt (Added:

that generates a symmetric map with more than one so called center.
e randomWeight - The weighting factor of random node weight generation. —(Added:

e gradientWeight - The weighting factor of gradient node weight genera-
tion.

e optimaWeight - The weighting factor of optima node weight generation.

e blurlterations - How many iterations of blurring shall happen (only
relevant if optimaWeight > 0)

e optimaPercentage - The probability with which a node might be a local
optimum (only relevant if optimaWeight > 0)

2.2.1 Actions

The actions section is used to specify the costs that actions may imply for the
agents attempting to execute them. There must be one action tag for each
action. Thus, the name attribute must be one of the following: recharge, goto,
attack, parry, probe, survey, inspect, repair or buy.

In the general case, the rest of the attributes to be specified here represent
the costs of attempting to execute that action in different situations. An action
can cost energy, health, and achievement points (money). The costs can
vary depending on the success or failure of the action, and also on whether the
agent is in a normal or disableﬂ state, so attributes for all the combinations
can be speciﬁedEI The names of these attributes are:

e energyCost
e healthCost
e pointsCost

e energyCostFailed

e energyCostDisabled

e energyCostFailedDisabled

Two special cases are the actions recharge and goto. For the recharge
action, the values represent the percentage of the maximum energy and health
that gets recovered. “Failure” in this particular case means that the agent has
been attacked, and thus the health and energy recovering rates can be specified
to be different.

The energy cost of a successful goto action is actually determined by the cost
of the traversed edge. Therefore, the energyCost and energyCostDisabled

3An agent is considered to be in disabled state when its current health is 0
4Not all combinations make sense, and some of them may be just ignored by the server.
Nevertheless, they are provided for notation consistency

S EEEE—
New in 2013:

Added.
New in 2013:

Added.

New in 2013:

Added.

New in 2013:

Added.

specified here are considered as factors, that are multiplied by the edge cost.
The cost for the Failed cases, on the other hand, are constants, as with the
rest of the actions.

A thing to note here is that some costs can be specified to be negative values,
e.g. if an agent should recover some energy when it was not able to perform a
particular action.

2.2.2 Roles

The roles section defines the different roles that agents participating in the
simulation will assume. A role encompasses all the internal characteristics of
the agent and the set of actions that the agent is allowed to perform, both when
in normal state and when disabled. The following attributes should be specified
for each role:

e name - The name by which this role is referenced.
e maxEnergy - The initial upper limit for the energy of the agent.

e maxBuyEnergy - The upper limit for maxEnergy that can be reached when
attempting to perform the buy action with param="battery".

e rateBuyEnergy - The amount by which maxEnergy is increased when suc-
cessfully performing the buy action with param="battery".

e maxEnergyDisabled - The initial upper limit for the energy of the agent
when disabled.

e rateBuyEnergyDisabled - The amount by which maxEnergyDisabled is
increased when successfully performing the buy action with param="battery".

e maxHealth - The initial upper limit for the health of the agent.

e maxBuyHealth - The upper limit for maxHealth that can be reached when
attempting to perform the buy action with param="shield".

e rateBuyHealth - The amount by which maxHealth is increased when suc-
cessfully performing the buy action with param="shield".

e strength - The initial strength of the agent.

e maxBuyStrength - The upper limit for strength that can be reached when
attempting to perform the buy action with param="sabotageDevice".

e rateBuyStrength - The amount by which strength is increased when
successfully performing the buy action (with param="sabotageDevice").

e visRange - The initial visibility range of the agent.

e maxBuyVisRange - The upper limit for visRange that can be reached when
attempting to perform the buy action with param="sensor".

e rateBuyVisRange - The amount by which visRange is increased when
successfully performing the buy action (with param="sensor").

The actions and actionsDisable sections of the role definition expect a
list of action tags with only one attribute: the name of an action. The actions
listed in these sections are the only actions that will be enabled for agents having
this role when in normal or disabled state respectively.

2.2.3 Achievements

The achievements that will yield achievement points for the teams are defined
here. Each achievement has four attributes: a (preferably unique) name, a class
stating the type of achievement, a quantity needed to reach the achievement,
and the number of points that the achievement yields. Six different classes of
achievements are implemented:

e probedVertices - The quantity means the number of different nodes
that a team needs to probe.

e surveyedEdges - The quantity means the number of different edges that
a team needs to survey.

e inspectedAgents - The quantity means the number of different oppo-
nent agents that a team needs to inspect.

e successfullAttacks - The quantity means the number of successful at-
tacks that a team needs to perform.

e successfulParries - The quantity means the number of successful par-
ries that a team needs to perform (only counted when the parrying agent
is actually attacked by an opponent).

e areaValue - The quantity means the score of a zone that a team needs
to build.

2.2.4 Agents

The agents part of the simulation configuration is where it is defined how
server-side teams are to be composed during the simulation. Agents defined here
will be matched with agents defined in the accounts section to be controlled
externally by the participants. This matching of agents varies in function of the
tournamentmode parameter explained in

The attributes for the agent tag are:

e team - The server-side name of the team.

e agentclass - The name of main Java class implementing the agents. For
the 2013 Mars scenario, the class to use is
massim.competition2013.GraphSimulationAgent.

10

e agentcreationclass - The name of the Java class that will hold the
configuration parsed from the configuration child tag. For the 2013
Mars scenario, the class to use is
massim.competition2013.GraphSimulationAgentParameter.

The configuration child tag for the 2013 Mars scenario only has one at-
tribute: roleName, which refers to the name of one of the previously defined
roles.

2.3 Accounts Configuration

In the accounts section of the configuration file, one can configure the devel-
opers’ team that will participate in the tournament, and with which credentials
each developer-side agent will connect to MASSim to control its server-side
counterpart.

The actionclassmap has one attribute name and defines all available action
classes for the agent accounts. Each actionclass has a class attribute and an
id. An account is structured as follows:

e actionclassmap - Refers to the actionclassmap name that is used for this
account.

e auxtimeout - Additional timeout for messages. The purpose of this pa-
rameter is to give the agents some additional time to allow the server to
process the message.

e defaultactionclass - Sets the default action class.

e maxpacketlength - Defines the maximal length of on message.
e password - The password for the agent.

e team - The team name for the agent.

e timeout - The timout for messages.

e username - The user name of the agent.

3 Statistics Generation

MASSim now includes a new observer that generates statistics for each simu-
lation and delivers them as images. It can be activated in the file config.dtd
following this example:

<!ATTLIST simulation
statisticsobserver CDATA "massim.competition2013.GraphSimulationStatisticsObserver"
statisticsobserverpath CDATA "statistics"

>

This will activate the statistics-observer which will plot all the output to the
specified folder. Please have a look at the scenario description for details.

11

	Starting the Programs
	MASSim Server
	MASSim Monitor
	MASSim Web Server

	Configuring MASSim
	General Configuration
	Simulation Configuration
	Actions
	Roles
	Achievements
	Agents

	Accounts Configuration

	Statistics Generation

