
Multi-Agent Programming Contest

EISMASSim Description

(2013 Edition)

http://www.multiagentcontest.org/2013/

Jürgen Dix Michael Köster Federico Schlesinger

June 6, 2013

New in 2013: Differences between the last year and 2013 are now marked
with boxes.

Contents

1 About EISMASSim 2

2 Using EISMASSim 2

3 Configuring EISMASSim 5

4 Scheduling 6

5 Actions and Percepts for the Mars-Scenario 7

1

http://www.multiagentcontest.org/2013/


1 About EISMASSim

EISMASSim is based on EIS1, which is an proposed standard for agent-environ-
ment interaction. It maps the communication between the MASSim-server and
agents, that is sending and receiving XML-messages, to Java-method-calls and
call-backs. On top of that it automatically establishes and maintains connec-
tions to a specified MASSim-server. Additionally it is intended to also gather
statistics about the execution of your agents. EISMASSim and EIS both come
as a jar-files which are included in the software-package.

2 Using EISMASSim

In order to use EISMASSim with your project, you have to perform a couple of
steps, which we will outline here.

1. Setting up the class-path: The first thing you have to do is to add
EIS and EISMASSim to the class-path of your project. Please use the jar-
files eis-0.3.jar and eismassim-2.1.jar. The first jar contains the generic

New in 2013:

New package

environment-interface, the second one contains the specialized one.

2. Creating an instance of the environment interface: It is not intended
to instantiate EIS-compliant environment-interfaces directly, that is calling the
constructor of the respective class. Instead it is advised to use the class-loader
eis.EILoader. Here is an example for instantiating the environment-interface-
class via this very class-loader2:

EnvironmentInterfaceStandard ei = null;

try {

String cn = "massim.eismassim.EnvironmentInterface";

ei = EILoader.fromClassName(cn);

} catch (IOException e) {

// TODO handle the exception

}

3. Registering your agents: Now that the environment-interface is instan-
tiated you need to register your agents to it. That is, that you are required to
register every single agent that is supposed to interact with the environment via
the environment-interface using its name or any unique identifier. For each of
your agents please do this:

1Available at http://sf.net/projects/apleis/.
2There is also a method called fromJarFile, which firstly add a jar-file to the class-path,

secondly looks up the main-class attribute from the jar’s manifest-entry, and thirdly instanti-
ates the environment-interface. This works for EISMASSim as well.

2

http://sf.net/projects/apleis/


try {

ei.registerAgent(agentName);

} catch (AgentException e1) {

// TODO handle the exception

}

4. Associating your agents with the vehicles: At this moment you have
to associate your agents with the available entities. An entity is a connection to
a vehicle, which is part of a simulation executed by the MASSim-server. You can
associate one of your agents with an entity (vehicle) by using the entity’s name.
The names of the entities however are specified in the configuration XML-file
(see below). As soon as you associate an agent with an entity, a connection
to the MASSim-server is established. Here is an example how to associate an
agent with an entity:

try {

ei.associateEntity(agentName,entityName);

} catch (RelationException e) {

// TODO handle the exception

}

5. Starting the execution: The next step is to start the overall execution.
This is how it is done:

try {

ei.start();

} catch (ManagementException e) {

// TODO handle the exception

}

3



6. Perceiving the environment: Perceiving is facilitated either by 1. get-
ting all percepts, that is calling the getAllPercepts-method or 2. by handling
percepts-as-notifications, that is every time there is a new percept a listener’s
method is called in order to trigger a reaction to the percept. Note that this
is EIS’s usual policy about perceiving. Here is an example for retrieving all
percepts3:

try {

Collection<Percept> ret = getAllPercepts(getName());

// TODO interpret the percepts

} catch (PerceiveException e) {

// TODO handle the exception

} catch (NoEnvironmentException e) {

// TODO handle the exception

}

7. Acting: Executing an action means invoking the performAction-method
and passing 1. the name of the agent, that intends to execute an action, and 2.
an action-object that represents the action-to-be-executed. This is an exemplary
execution of an action:

Action = new Action(...);

try {

ei.performAction(agentName, action);

} catch (ActException e) {

// handle the exception

}

3For an introduction on how to use percepts-as-notifications, see the manual that accom-
panies the EIS software package.

4



3 Configuring EISMASSim

The EISMASSim environment-interface can be configured using the configuration-
file eismassimconfig.xml which is automatically loaded and evaluated when
the environment-interface is instantiated. Fig. 1 shows an exemplary configura-
tion-file for EISMASSim.

<?xml version="1.0" encoding="UTF-8"?>
<interfaceConfig scenario="mars2013" host="localhost" port="12300"
scheduling="yes" times="no" notifications="no" timeout="5000"
statisticsFile="yes" statisticsShell="yes">

<entities>
<entity name="vehicle1" username="a1" password="1" xml="yes" iilang="yes"/>
<entity name="vehicle2" username="a2" password="1" xml="yes" iilang="yes"/>
<entity name="vehicle3" username="a3" password="1" xml="yes" iilang="yes"/>
<entity name="vehicle4" username="a4" password="1" xml="yes" iilang="yes"/>
...

</entities>
</interfaceConfig>

Figure 1: An exemplary EISMASSim-configuration-file.

The attributes of the <interfaceConfig>-tag are:

• scenario specifies the Contest-scenario that is supposed to be handled.
For 2013 the value that is accepted is mars2013.

• host specifies the URL of the MASSim-server that runs the simulations.
This can be for example localhost, a valid IP-address, or the fully-
qualified hostname of one of our Contest-servers.

• port specifies the port-number of the MASSim-server.

• scheduling enables/disables scheduling. Enabled scheduling means that
an action-message is not sent unless there is a valid action-id (see the
protocol-description for details on the action-ids). This mechanism makes
sure that a single action-id is used only once. Note that an attempt to send
an action-message times out after 5 seconds (defined in timeout). The
default value is yes for scheduling enabled. Warning: note, however, that
disabling scheduling in the interface leaves you with the responsibility of
scheduling, that is to ensure that the server is not strained with more than
one action per connection and simulation-step.

• times enables/disables time-annotations. If enabled this will annotate
each percept with a time-stamp, that indicates when the percept has been
generated by the server (see the protocol-description for details on time-
stamps).

• notifications denotes whether percepts are to be provided as notifica-
tions. The default-value is no.

5



• timeout specifies the number of milliseconds for the timeouts of the schedul-
ing process. This is only used if scheduling is enabled. The default-value
is 5000.

• statisticsFile enables statistics-function, which computes the average
response time of the agents and the percentual frequency of each kind of
action. The results will be plotted to file.

• statisticsShell is similar to statisticsFile, just the result will be
plotted to the shell. Both options’ default value is no.

Each <entity>-tag specifies a single connection to the MASSim-server. The
attributes are:

• name specifies the name of the connection. This is a requirement for acting
and perceiving, and needs to be unique.

• username and password specify the credentials that are required by MAS-
Sim’s authentication-mechanism (provided either by the organizers, or
specified in your very own server-configuration-file).

• xml enables/disables printing incoming/outgoing XML-messages to the
console. This is useful for debugging-purposes. This is deactivated per
default.

• iilang enables/disables printing percepts to the console. This is also
useful for debugging-purposes. This is deactivated per default.

4 Scheduling

If scheduling is enabled the environment interface makes sure that the agents are
properly synchronized with the MASSim-server. This is facilitated by ensuring
that you can call the methods getAllPercepts and performAction only once
per simulation step. In each step the server provides an action-identifier, which
is a token that can be used only once. As long as there is no new action-identifier
received from the server, getAllPercepts and performAction will block until
a user-defined time-out is exceeded.

6



5 Actions and Percepts for the Mars-Scenario

Actions. In the following, we will elaborate on actions and percepts. Each
action and each percept consists of a name followed by an optional list of pa-
rameters. A parameter is either an identifier (<Identifier>), that is a String,
or a numeral(<Numeral>).

Here is the list of actions that can be performed in the course of each simu-
lation (see the scenario-description for the precise semantics of the actions):

New in 2013:

We changed the

semantics of

the actions.

• attack(<Identifier>) attacks a vehicle.

• buy(<Identifier>) buys an item.

• goto(<Identifier>) moves to a vertex.

• inspect inspects some visible vehicles.

• parry parries all attacks.

• probe probes the current vertex.

• recharge recharges the vehicle.

• repair(<Identifier>) repairs a vehicle.

• skip does nothing.

• survey surveys some visible edges.

Creating an action-object that is to be passed as a parameter to the method
performAction is very straightforward:

Action attack = new Action("attack", new Identifier("a2"));

Percepts. In the following we will consider a list of percepts that can be
available during a tournament. Note that during a simulation, data from the
respective sim-start-message will be available as well as data from the current
request-action-message (see the protocol description for details about such
messages):

• achievement(<Identifier>) denotes an achievement.

• bye indicates that the tournament is over.

• deadline(<Numeral>) indicates the deadline for sending a valid action-
message to the server in Unix-time.

• edges(<Numeral>) represents the number of edges of the current simula-
tion.

• energy(<Numeral>) denotes the current amount of energy of the vehicle.

7



• health(<Numeral>) indicates the current health of the vehicle.

• id(<Identifier>) indicates the identifier of the current simulation.

• lastAction(<Identifier>) indicates the last action that was sent to the
server.

• lastActionParam(<Identifier>) indicates the parameter of the last ac-
tion that was sent to the server.

• lastActionResult(<Identifier>) indicates the outcome of the last ac-

New in 2013:

New outcomes

possible

tion.

• lastStepScore(<Numeral>) indicates the score of the vehicle’s team in
the last step of the current simulation.

• maxEnergy(<Numeral>) denotes the maximum amount of energy the ve-
hicle can have.

• maxEnergyDisabled(<Numeral>) denotes the maximum amount of en-
ergy the vehicle can have, when it is disabled.

• maxHealth(<Numeral>) represents the maximum health the vehicle can
have.

• money(<Numeral>) denotes the amount of money available to the vehicle’s
team.

• position(<Identifier>) indicates the current position of the vehicle.
The identifier is the vertex’s name.

• probedVertex(<Identifier>,<Numeral>) denotes the value of a probed
vertex. The identifier is the vertex’s name and the numeral is its value.

• ranking(<Numeral>) indicates the outcome of the simulation for the ve-
hicle’s team, that is its ranking.

• requestAction indicates that the server has requested the vehicle to per-
form an action.

• role denotes the role as defined in the configuration.

• score(<Numeral>) represents is the overall score of the vehicle’s team.

• simEnd indicates that the server has notified the vehicle about the end of
a simulation.

• simStart indicates that the server has notified the vehicle about the start
of a simulation.

• step(<Numeral>) represents the current step of the current simulation.

8



• steps(<Numeral>) represents the overall number of steps of the current
simulation.

• strength(<Numeral>) represents the current strength of the vehicle.

• surveyedEdge(<Identifier>,<Identifier>,<Numeral>) indicates the
weight of a surveyed edge. The identifiers represent the adjacent vertices
and the numeral denotes the weight of the edge.

• timestamp(<Numeral>) represents the moment in time, when the last
message was sent by the server, again in Unix-time.

• vertices(<Numeral>) represents the number of vertices of the current
simulation.

• visRange(<Numeral>) denotes the current visibility-range of the vehicle.

• visibleEdge(<Identifier>,<Identifier>) represents a visible edge, de-
noted by its two adjacent vertices.

• visibleEntity(<Identifier>,<Identifier>,<Identifier>,<Identifier>)

denotes a visible vehicle. The first identifier represents the vehicle’s name,
the second one the vertex it is standing on, the third its team and the
fourth and final one indicates whether the entity is disabled or not.

• visibleVertex(<Identifier>,<Identifier>) denotes a visible vertex,
represented by its name and the team that occupies it.

• zoneScore(<Numeral>) indicates the current score yielded by the zone
the vehicle is part of.

• zonesScore(<Numeral>) indicates the current score of the vehicle’s team
yielded by zones, that is the sum of scores of all zones.

Note, however, that the percepts look a little different, when annotations
(see the section on configuring EISMASSim) are activated.

9


	About EISMASSim
	Using EISMASSim
	Configuring EISMASSim
	Scheduling
	Actions and Percepts for the Mars-Scenario

