Multi-Agent Programming Contest

Protocol Description
(2016 Edition)

http://www.multiagentcontest.org/

Tobias Ahlbrecht Jurgen Dix Federico Schlesinger

January 27, 2016

New in 2016: Since we implemented a brand new scenario for 2015, spe-
cific contents of all messages have changed. The general communication pro-
tocol, however, remains the same.

Contents
IL General Agent-2-Server Communication Principles| 2
2__Communication Protocol Overview| 2
21 Recommectionl 4
2.2 XML Messages Description| 5
2.2.1 XML message structure|00 5
2.2.2 AUTH-REQUEST (agent-2-server)| 5
2.2.3 AUTH-RESPONSE (server-2-agent)| 6
2.2.4 SIM-START (server-2-agent)| 6
2.2.5 SIM-END (server-2-agent)|. 7
2.2.6 BYE (server-2-agent)| 7
2.2.7 REQUEST-ACTION (server-2-agemt)| 8
2.2.8 ACTION (agent-2-server) 12
2.2.9 Action Results] 13

http://www.multiagentcontest.org/

1 General Agent-2-Server Communication Prin-
ciples

The agents from each participating team will be executed locally (on the par-
ticipant’s hardware) while the simulated environment, in which all agents from
competing teams perform actions, runs on the remote contest simulation server.

Agents communicate with the contest server using standard TCP/IP stack
with socket session interface. The Internet coordinates (IP address and port) of
the contest server (and a dedicated test server) will be announced later via the
official contest mailing list.

Agents communicate with the server by exchanging XML messages. Mes-
sages are well-formed XML documents, described later in this document. We
recommend using standard XML parsers available for many programming lan-
guages for generation and processing of these XML messages. Note that ill-
formed messages, that is messages that do not comply to the message-syntax
outlined here, are ignored.

2 Communication Protocol Overview

Logically, the tournament consists of a number of matches. A match is a sequel
of simulations during which several teams of agents compete in several different
settings of the environment. However, from agent’s point of view, the tourna-
ment consists of a number of simulations in different environment settings and
against different opponents.

The tournament is divided into three phases:

1. the initial phase,
2. the simulation phase, and
3. the final phase.

During the initial phase, agents connect to the simulation server and identify
themselves by username and password (AUTH-REQUEST message). Credentials for
each agent will be distributed in advance via e-mail. As a response, agents re-
ceive the result of their authentication request (AUTH-RESPONSE message) which
can either succeed, or fail. After successful authentication, agents should wait
until the first simulation of the tournament starts.

Fig. |1 shows a picture of the initial phase (UML-like notation).

At the beginning of each simulation, agents of the two participating teams
are notified (SIM-START message) and receive simulation specific information.

In each simulation step each agent receives a perception about its environ-
ment (REQUEST-ACTION message) and should respond by performing an action
(ACTION message).

The agent has to deliver its response within the given deadline. The action
message has to contain the identifier of the action, the agent wants to perform,
and action parameters, if required.

Server Agent
AUTH-REQUEST

AUTH-RESPONSE

Figure 1: The initial phase.

Server Agent
SIM-START

loop: Simulation Step Cycle
REQUEST-ACTION

ACTION

SIM-END

Figure 2: The simulation-phase.

Fig. [2| shows a picture of the simulation phase.

When the simulation is finished, participating agents receive a notification
about its end (SIM-END message) which includes the outcome of the simulation.

All agents which currently do not participate in a simulation should wait
until the simulation server notifies them about either 1) the start of a simulation,
they are going to participate in, or 2) the end of the tournament.

At the end of the tournament, all agents receive a notification (BYE message).
Subsequently the simulation server will terminate the connections to the agents.

Fig. 3| shows a picture of the final phase.

Server Agent
BYE

Figure 3: The final phase.

Server Agent
AUTH-REQUEST

AUTH-RESPONSE

SIM-START

Figure 4: Reconnecting.

2.1 Reconnection

When an agent loses connection to the simulation server, the tournament pro-
ceeds without disruption, only all the actions of the disconnected agent are con-
sidered to be empty (skip). Agents themselves are responsible for maintaining
the connection to the simulation server and in a case of connection disruption,
they are allowed to reconnect.

Agents reconnect by performing the same sequence of steps as at the be-
ginning of the tournament. After establishing the connection to the simulation
server, it sends AUTH-REQUEST message and receives AUTH-RESPONSE. After suc-
cessful authentication, the server sends SIM-START message to an agent. If an
agent participates in a currently running simulation, the SIM-START message
will be delivered immediately after AUTH-RESPONSE. Otherwise an agent will
wait until a next simulation in which it participates starts. In the next sub-
sequent step when the agent is picked to perform an action, it receives the
standard REQUEST-ACTION message containing the perception of the agent at
the current simulation step and simulation proceeds in a normal mode.

Fig. @] shows a picture of the reconnection.

2.2 XML Messages Description
2.2.1 XML message structure

XML messages exchanged between server and agents are zero terminated UTF-8
strings. Each XML message exchanged between the simulation server and agent
consists of three parts:

e Standard XML header: Contains the standard XML document header

<?xml version="1.0" encoding="UTF-8"7>

o Message envelope: The root element of all XML messages is <message>.
It has attributes the timestamp and a message type identifier.

e Message separator: Note that because each message is a UTF-8-zero-
terminated string, messages are separated by nullbyte.

The timestamp is a numeric string containing the status of the simulation
server’s global timer at the time of message creation. The unit of the global
timer is milliseconds and it is the result of standard system call ”time” on the
simulation server (measuring number of milliseconds from January 1st, 1970
UTC). The message type identifier is one of the following values: auth-request,
auth-response, sim-start, sim-end, bye, request-action, action.

Messages sent from the server to an agent contain all attributes of the root
element. However, the timestamp attribute can be omitted in messages sent
from an agent to the server. In the case it is included, server silently ignores it.

Example of a server-2-agent message:

<message timestamp="10001980000000" type="request-action">
<!-- optional data -->
</message>

Example of an agent-2-server message:

<message type="auth-request">
<!-- optional data -->
</message>

Depending on the message type, the root element <message> can contain
simulation specific data.

2.2.2 AUTH-REQUEST (agent-2-server)

When an agent connects to the server, it has to authenticate itself using the
username and password provided in advance by the contest organizers. This
way we prevent the unauthorized use of connections belonging to a contest
participant. AUTH-REQUEST is the very first message an agent sends to the
contest server.

The message envelope contains one element <authentication> without
subelements. It has two attributes username and password.
Example:

<?7xml version="1.0" encoding="UTF-8" standalone="no"7>
<message type="auth-request">

<authentication password="1" username="al"/>
</message>

2.2.3 AUTH-RESPONSE (server-2-agent)

Upon receiving AUTH-REQUEST message, the server verifies the provided creden-
tials and responds by a message AUTH-RESPONSE indicating success, or failure of
authentication. It has one attribute timestamp that represents the time when
the message was sent.

The envelope contains one <authentication> element without subelements.
It has one attribute result of type string and its value can be either "ok", or
"fail". Example:

<?xml version="1.0" encoding="UTF-8" standalone="no"7>

<message timestamp="1297263037617" type="auth-response">
<authentication result="ok"/>

</message>

2.2.4 SIM-START (server-2-agent)

The simulation starts by notifying the corresponding agents about the details
of the starting simulation. This notification is done by sending the SIM-START
message.

The data about the starting simulation are contained in one <simulation>
element with the following attributes:

e the respective agent’s role and its details (speed, maximum load and
charge, usable tools),

e the id of the simulation,

e the name of the current map,

e the seed capital of each team,

e the number of steps the simulation will last, and
e the products in the simulation.

One step involves all agents acting at once. Therefore if a simulation has n
steps, it means that each agent will receive n REQUEST-ACTION messages during
the simulation (assuming a stable connection to the server).

Example:

<?xml version="1.0" encoding="UTF-8" standalone="no"?7>
<message timestamp="1297263004607" type="sim-start">
<simulation id="0" steps="500" team="A">
<role name="Car" speed="3" maxLoad="550" maxBattery="500">
<tool name="tooll"/>
<tool name="tool2/>
</role>
<products>
<product name="productl" volume="50" assembled="true">
<consumed>
<item name="itl1" amount="5"/>

</consumed>
<tools>
<item name="it2" amount="1"/>
</tools>
</product>
</products>

</simulation>
</message>

2.2.5 SIM-END (server-2-agent)

Each simulation lasts a certain number of steps. At the end of each simulation
the server notifies agents about its end and its result.

The <sim-result>-tag has two attributes. ranking is the ranking of the
team and score is the final score.

Example

<?7xml version="1.0" encoding="UTF-8" standalone="no"7>

<message timestamp="1297269179279" type="sim-end">
<sim-result ranking="2" score="9"/>

</message>

2.2.6 BYE (server-2-agent)

At the end of the tournament the server notifies each agent that the last sim-
ulation has finished and subsequently terminates the connections. There is no
data within the message envelope of this message.

Example

<?xml version="1.0" encoding="UTF-8"7>
<message timestamp="1204978760555" type="bye"/>

2.2.7 REQUEST-ACTION (server-2-agent)

In each simulation step the server asks the agents to perform an action and
sends them the corresponding perceptions.

This message, due to its complexity, is best explained using an example.
Note, however, that the following message is an artificial one, which has never
been sent by the server:

<?7xml version="1.0" encoding="UTF-8" standalone="no"7>
<message timestamp="1297263230578" type='"request-action">
<perception deadline="1297263232578" id="201">
<simulation step="200"/>

<self

charge="19"

load="9"

lastAction="skip"

lastActionParam=""

lastActionResult="successful"

lat="44"

lon="44"

inFacility="none"

fPosition="-1"

routeLength="2">

<items>

<item name="itl" amount="2"/>

</items>
<route>
<n i="0" lat="10" lon="11"/>
<n i="1" lat="10" lon="12"/>
</route>

</self>

<team money="1">

<jobs-taken>
<job id="job_id1i"/>

</jobs-taken>
<jobs-posted>

<job id="job_id2"/>

</jobs-posted>
</team>

<entities>

<entity name="b5" team="B" lat="44" lon="44" role="Truck"/>
</entities>

<facilities>

<chargingStation name="chargel" lat="22" lon="44"
rate="20" price="10" slots="3">
<info qSize="3"/>

</chargingStation>

<dumpLocation name="dumpl" lat="33" lon="77"
price="10"/>

<shop name="shopl" lat="99" lon="44">

<item name="it1">

<info cost="10" amount="5" restock="35"/>
</item>

</shop>
<storage name="storl" lat="22" lon="55"

price="4" totalCapacity="50" usedCapacity="20">
<item name="itl" stored="3" delivered="2"/>

</storage>

<workshop name="workshl" lat="11" lon="33"
price="9"/>

</facilities>

<jobs>

<auctionJob id="job_idl" storage="storl" begin="35" end="85"
fine="100" maxBid="200">
<items>
<item name="itl" amount="10">

</items>
</auctionJob>
<pricedJob id="job_id2" storage="stor2" begin="50" end="120"
reward="150">
<items>
<item name="it2" amount="35" delivered="10">

</items>
</pricedJob>

</jobs>

</perception>
</message>

Now, it is not necessary to elaborate on the nesting of the tags, which is
obvious from the example. We will only focus on the relevant tags.

e <perception> has two attributes

deadline denotes the latest moment in time when the server will
accept an action, and

id represents the action-id, that is the id, that is supposed to be
added to the action-message.

e <simulation> has a step-attribute, that denotes the current step of the
simulation.

e <self> represents the state of the vehicle, with the attributes

charge, which is the current charge,
load, which is the current load,
lastAction, which is the last action that has been performed,

lastActionParam, which is the parameter of last action that has
been performed,

lastActionResult, which is the outcome of the last action, with
precise semantics,

lat, which is the agent’s latitude,
lon, which is the agent’s longitude,

inFacility, which is the facility where the agent currently is located
(or “none”),

fPosition, which is the position in the above facility (or —1),

routeLength, which is the length of the route, if the agent is following
one,

also the <items>-tag, which describes the items an agent carries by <item>-
tags with the attributes

name, which is the item’s name, and

amount, which is the amount carried,

and the route-tag which describes the route the agent follows by a number
of node-tags <n> with the attributes:

i, which is the index in the ordererd list of waypoints,

10

— lat, which is the latitude of the waypoint, and

— lon, which is the waypoint’s longitude,
e <team> represents the state of the vehicles’s team, with the attribute
— money, which is the current amount of money the team has,
and the subtags

— <jobs-taken>, and

— <jobs-posted>,
which can include multiple <job>-tags with the attribute id,

e <entities> includes a tag for each agent in the simulation with self-
explanatory attributes,

e <facilities> represents all facilities in the simulation (for readability,
we will omit trivial attributes in the following):
— chargingStation, representing a charging station, where
* rate means the charging rate,

* slots denotes the number of charging outlets, and

% the <info>-tag contains information only visible if the agent is
nearby, like the number of vehicles waiting to charge,

— dumpLocation represents a dump facility,

— shop represents a shop, listing all available items and showing the
prices and quantities if the agent is nearby,

— storage representing a storage facility with all stored and delivered
products,

— workshop representing a workshop facility.
e <jobs> containing all jobs currently active or to be auctioned, i.e.

— <auctionJob>, and

— <pricedJob>,

again with all self-explanatory attributes.

Finally, to get a better understanding of what all this information means, you
can read the scenario description.

11

2.2.8 ACTION (agent-2-server)

The agent should respond to the REQUEST-ACTION message by an action it
chooses to perform.

The envelope of the ACTION message contains one element <action> with
the attributes type and id. The attribute type indicates an action the agent
wants to perform. It contains a string value which can be one of the following
strings:

"goto" with an optional attribute param, moves the entity to another
location or facility.

"pbuy" with an obligatory attribute param, buys a number of instances of
an item from the shop at the current location.

"give" with an obligatory attribute param, gives a number of instances
of an item to a teammate.

"receive" receives items from teammates,

"store" with an obligatory attribute param, stores a number of instances
of an item from the storage facility at the current location.

"retrieve" with an obligatory attribute param, retrieves a number of
instances of an item (previously stored) from the storage facility at the
current location.

"retrieve_delivered" with an obligatory attribute param, retrieves a
number of instances of an item (previously delivered as part of a job’s
completion) from the storage facility at the current location.

"dump" with an obligatory attribute param, dumps a number of instances
of an item from the dump facility at the current location.

"assemble" with an obligatory attribute param, creates a single instance
of an item.

"assist_assemble" with an obligatory attribute param, creates a single
instance of an item.

"deliver_job" with an obligatory attribute param, delivers at the storage
facility at the current location, all relevant items that the agent is carrying,
towards the completion of the job.

"charge" increases the charge of the agent according to the charging sta-
tion at the current location.

"bid_for_job" with an obligatory attribute param, places a bid for an
action job currently in the auction period.

"post_job" with an obligatory attribute param, creates a new job posting.

12

e "call breakdown service" calls for battery replacement after a prede-
fined amount of time and costs a lot of money. (needs to be executed
explicitly until battery is actually replaced)

e "continue" if there is an ongoing action (goto or charge), it is continued,
otherwise does nothing.

e "skip" same as continue.
e "abort" does nothing, stops ongoing actions.

Note, however, that the scenario description contains the precise semantics
of the actions, as well as the parameters expected for each action.
Here is an example of a goto-action:

<?7xml version="1.0" encoding="UTF-8"7>
<message type="action">

<action type="goto" param="at=51.805 lon=10.3355">
</message>

The attribute id is a string which should contain the REQUEST-ACTION mes-
sage identifier. The agents must plainly copy the value of id attribute in
REQUEST-ACTION message to the id attribute of ACTION message, otherwise
the action message will be discarded.

Note that the corresponding ACTION message has to be delivered to the time
indicated by the value of attribute deadline of the REQUEST-ACTION message.
Agents should therefore send the ACTION message in advance before the indi-
cated deadline is reached so that the server will receive it in time.

Example:

<7xml version="1.0" encoding="UTF-8"7>
<message type="action">

<action id="70" type="skip"/>
</message>

2.2.9 Action Results

A part of the REQUEST-ACTION message is the result of the previously performed
action. Usually three attributes will be provided: lastAction is the action name
sent by the agent, lastActionParam is the action parameter sent by the agent,
and lastActionResult is the outcome of the action.

For the semantics of each possible value of lastActionResult, please refer
to the scenario description. All the possible values are listed here:

e successful

e failed_location

13

failed_unknown_item
failed_unknown_agent
failed_unknown_job
failed_unknown_facility
failed no_route
failed_item_amount
failed_capacity
failed wrong facility
failed_tools
failed_item_type
failed_job_status
failed_job_type
failed_counterpat
failed_wrong_param
failed_unknown_error
failed

successful _partial

useless

14

	General Agent-2-Server Communication Principles
	Communication Protocol Overview
	Reconnection
	XML Messages Description
	XML message structure
	AUTH-REQUEST (agent-2-server)
	AUTH-RESPONSE (server-2-agent)
	SIM-START (server-2-agent)
	SIM-END (server-2-agent)
	BYE (server-2-agent)
	REQUEST-ACTION (server-2-agent)
	ACTION (agent-2-server)
	Action Results

