
Multi-Agent Programming Contest

EISMASSim Description

(2016 Edition)

http://www.multiagentcontest.org/

Tobias Ahlbrecht Jürgen Dix Federico Schlesinger

January 13, 2016

New in 2016: Differences between the last year and 2016 are marked with
boxes.

Contents

1 About EISMASSim 2

2 Using EISMASSim 2

3 Configuring EISMASSim 5

4 Scheduling 6

5 Actions and Percepts for the Logistics-Scenario 7

1

http://www.multiagentcontest.org/

1 About EISMASSim

EISMASSim is based on EIS1, which is an proposed standard for agent-environ-
ment interaction. It maps the communication between the MASSim-server and
agents, that is sending and receiving XML-messages, to Java-method-calls and
call-backs. On top of that it automatically establishes and maintains connec-
tions to a specified MASSim-server. Additionally it is intended to also gather
statistics about the execution of your agents. EISMASSim and EIS both come
as jar-files which are included in the software-package.

2 Using EISMASSim

In order to use EISMASSim with your project, you have to perform a couple of
steps, which we will outline here.

1. Setting up the class-path: The first thing you have to do is to add
EIS and EISMASSim to the class-path of your project. Please use the jar-
files eis-0.3.jar and eismassim-2.2.jar. The first jar contains the generic New in 2016:

EISMASSim

has been up-

dated to 2.2

New in 2016:

EISMASSim

has been up-

dated to 2.2

environment-interface, the second one contains the specialized one.

2. Creating an instance of the environment interface: It is not intended
to instantiate EIS-compliant environment-interfaces directly, that is calling the
constructor of the respective class. Instead it is advised to use the class-loader
eis.EILoader. Here is an example for instantiating the environment-interface-
class via this very class-loader2:

EnvironmentInterfaceStandard ei = null;

try {

String cn = "massim.eismassim.EnvironmentInterface";

ei = EILoader.fromClassName(cn);

} catch (IOException e) {

// TODO handle the exception

}

3. Registering your agents: Now that the environment-interface is instan-
tiated you need to register your agents to it. That is, that you are required to
register every single agent that is supposed to interact with the environment via
the environment-interface using its name or any unique identifier. For each of
your agents please do this:

1Available at http://sf.net/projects/apleis/.
2There is also a method called fromJarFile, which firstly add a jar-file to the class-path,

secondly looks up the main-class attribute from the jar’s manifest-entry, and thirdly instanti-
ates the environment-interface. This works for EISMASSim as well.

2

http://sf.net/projects/apleis/

try {

ei.registerAgent(agentName);

} catch (AgentException e1) {

// TODO handle the exception

}

4. Associating your agents with the vehicles: At this moment you have
to associate your agents with the available entities. An entity is a connection to
a vehicle, which is part of a simulation executed by the MASSim-server. You can
associate one of your agents with an entity (vehicle) by using the entity’s name.
The names of the entities however are specified in the configuration XML-file
(see below). As soon as you associate an agent with an entity, a connection
to the MASSim-server is established. Here is an example how to associate an
agent with an entity:

try {

ei.associateEntity(agentName,entityName);

} catch (RelationException e) {

// TODO handle the exception

}

5. Starting the execution: The next step is to start the overall execution.
This is how it is done:

try {

ei.start();

} catch (ManagementException e) {

// TODO handle the exception

}

3

6. Perceiving the environment: Perceiving is facilitated either by 1. get-
ting all percepts, that is calling the getAllPercepts-method or 2. by handling
percepts-as-notifications, that is every time there is a new percept a listener’s
method is called in order to trigger a reaction to the percept. Note that this
is EIS’s usual policy about perceiving. Here is an example for retrieving all
percepts3:

try {

Collection<Percept> ret = getAllPercepts(getName());

// TODO interpret the percepts

} catch (PerceiveException e) {

// TODO handle the exception

} catch (NoEnvironmentException e) {

// TODO handle the exception

}

7. Acting: Executing an action means invoking the performAction-method
and passing 1. the name of the agent, that intends to execute an action, and 2.
an action-object that represents the action-to-be-executed. This is an exemplary
execution of an action:

Action = new Action(...);

try {

ei.performAction(agentName, action);

} catch (ActException e) {

// handle the exception

}

3For an introduction on how to use percepts-as-notifications, see the manual that accom-
panies the EIS software package.

4

3 Configuring EISMASSim

The EISMASSim environment-interface can be configured using the configuration-
file eismassimconfig.xml which is automatically loaded and evaluated when
the environment-interface is instantiated. Fig. 1 shows an exemplary configura-
tion-file for EISMASSim.

<?xml version="1.0" encoding="UTF-8"?>
<interfaceConfig scenario="city2015" host="localhost" port="12300"
scheduling="yes" times="no" notifications="no" timeout="5000"
statisticsFile="no" statisticsShell="no" queued="yes">

<entities>
<entity name="vehicle1" username="a1" password="1" xml="yes" iilang="yes"/>
<entity name="vehicle2" username="a2" password="1" xml="yes" iilang="yes"/>
<entity name="vehicle3" username="a3" password="1" xml="yes" iilang="yes"/>
<entity name="vehicle4" username="a4" password="1" xml="yes" iilang="yes"/>
...

</entities>
</interfaceConfig>

Figure 1: An exemplary EISMASSim-configuration-file.

The attributes of the <interfaceConfig>-tag are:

• scenario specifies the Contest-scenario that is supposed to be handled.
For 2016 the value that is accepted is city2016.

• host specifies the URL of the MASSim-server that runs the simulations.
This can be for example localhost, a valid IP-address, or the fully-
qualified hostname of one of our Contest-servers.

• port specifies the port-number of the MASSim-server.

• scheduling enables/disables scheduling. Enabled scheduling means that
an action-message is not sent unless there is a valid action-id (see the
protocol-description for details on the action-ids). This mechanism makes
sure that a single action-id is used only once. Note that an attempt to send
an action-message times out after 5 seconds (defined in timeout). The
default value is yes for scheduling enabled. Warning: note, however, that
disabling scheduling in the interface leaves you with the responsibility of
scheduling, that is to ensure that the server is not strained with more than
one action per connection and simulation-step.

• queued enables a Queue-mechanism for collections of percepts, that is,
each time the server sends percepts (for sim-start, action-request, or sim-
end), one collection of percepts is added to the queue. Therefore, getAllPercepts
becomes non-blocking (so as to ensure that all percepts can be removed
from the queue).

• times enables/disables time-annotations. If enabled this will annotate
each percept with a time-stamp, that indicates when the percept has been

5

generated by the server (see the protocol-description for details on time-
stamps).

• notifications denotes whether percepts are to be provided as notifica-
tions. The default-value is no.

• timeout specifies the number of milliseconds for the timeouts of the schedul-
ing process. This is only used if scheduling is enabled. The default-value
is 5000.

• statisticsFile enables statistics-function, which computes the average
response time of the agents and the percentual frequency of each kind of
action. The results will be plotted to file.

• statisticsShell is similar to statisticsFile, just the result will be
plotted to the shell. Both options’ default value is no.

Each <entity>-tag specifies a single connection to the MASSim-server. The
attributes are:

• name specifies the name of the connection. This is a requirement for acting
and perceiving, and needs to be unique.

• username and password specify the credentials that are required by MAS-
Sim’s authentication-mechanism (provided either by the organizers, or
specified in your very own server-configuration-file).

• xml enables/disables printing incoming/outgoing XML-messages to the
console. This is useful for debugging-purposes. This is deactivated per
default.

• iilang enables/disables printing percepts to the console. This is also
useful for debugging-purposes. This is deactivated per default.

4 Scheduling

If scheduling is enabled, the environment interface makes sure that the agents are
properly synchronized with the MASSim-server. This is facilitated by ensuring
that you can call the methods getAllPercepts and performAction only once
per simulation step. In each step the server provides an action-identifier, which
is a token that can be used only once. As long as there is no new action-identifier
received from the server, getAllPercepts4 and performAction will block until
a user-defined time-out is exceeded.

4getAllPercepts becomes non-blocking, if queued is enabled

6

5 Actions and Percepts for the Logistics-Scenario

New in 2016: The actions have been updated to match the brand-new sce-
nario.

Actions. In the following, we will elaborate on actions and percepts. Each
action and each percept consists of a name followed by an optional list of pa-
rameters. The parameters have to be supplied as an Identifier representing
a simple key-value list of the form <key1>=<value1> <key2>=<value2> ... in
which pairs are separated by a single white space.

Below is the list of actions that can be performed in the course of each
simulation. See the scenario-description for the precise semantics of the actions,
as well as the parameters required/available for each one:

• goto

• buy

• give

• receive

• store

• retrieve

• retrieve delivered

• dump

• assemble

• assist assemble

• deliver job

• charge

• bid for job

• post job

• continue

• skip

• abort

Creating an action-object that is to be passed as a parameter to the method
performAction is very straightforward:

7

Action a = new Action("goto", new Identifier("facility=shop1"));

Note: the use of new Identifier("...") to specify the list of parameters
for an action is because of backwards compatibility. A more semantically correct
way of specifying parameters is scheduled for a future update.

Percepts. In the following we will consider a list of percepts that can be
available during a tournament. Note that during a simulation, data from the
respective sim-start-message will be available as well as data from the current
request-action-message (see the protocol description for details about such
messages):

New in 2016: The percepts have been updated to match the brand-new
scenario.

• auctionJob(<Identifier1>,<Id2>,<Numeral3>,<Num4>,<Num5>,

<Num6>,[item(<Id7>,<Num8>),...]) denotes a job that is currently auc-
tioned.
Parameters: 1. id 2. storage 3. begin step 4. end step 5. fine 6. maximum
bid 7. item name 8. amount

• bye indicates that the tournament is over.

• charge(<Numeral>) denotes the current (battery) charge of an agent.

• chargingStation(<Identifier1>,<Numeral2>,<Numeral3>,

<Numeral4>, <Numeral5>, <Numeral6>) denotes a charging station.
Parameters: 1. name 2. latitude 3. longitude 4. ch. rate 5. price 6. slots

• deadline(<Numeral>) indicates the deadline for sending a valid action-
message to the server in Unix-time.

• dump(<Identifier1>,<Numeral2>,<Numeral3>,<Numeral4>) denotes a
dump facility.
Parameters: 1. name 2. latitude 3. longitude 4. price

• entity(<Identifier1>,<Identifier2>,<Numeral3>,<Numeral4>,

<Identifier5>) denotes an entity (agent) in the simulation.
Parameters: 1. name 2. team 3. latitude 4. longitude 5. role

• fPosition(<Numeral>) represents the queue-position the agent occupies
in the facility (or −1)

• id(<Identifier>) indicates the identifier of the current simulation.

• inFacility(<Identifier>) denotes the facility the agent is in (or “none”).

• item(<Identifier1>,<Numeral2>) an item the agent is carrying.
Parameters: 1. item name 2. amount carried

8

• jobPosted(<Identifier>) denotes a job that has been posted by the
agent’s team.

• jobTaken(<Identifier>) denotes a job that has been taken by the agent’s
team (an auction that has been won).

• lat(<Numeral>) denotes the latitude of the agent’s position (expect a
double-value here)

• load(<Numeral>) denotes the current load of an agent.

• lon(<Numeral>) denotes the longitude of the agent’s position (see: lat).

• lastAction(<Identifier>) indicates the last action that was sent to the
server.

• lastActionParam(<Identifier>) indicates the parameter of the last ac-
tion that was sent to the server.

• lastActionResult(<Identifier>) indicates the outcome of the last ac-
tion.

• map(<Identifier>) denotes the map that is currently played.

• money(<Numeral>) denotes the amount of money available to the vehicle’s
team.

• pricedJob(<Identifier1>,<Id2>,<Numeral3>,<Num4>,<Num5>,

[item(<Id6>,<Num7>,<Num8>),...]) denotes an active job both teams
can work on.
Parameters: 1. id 2. storage 3. begin 4. end 5. reward 6. item name
7. amount 8. delivered
Note: Parameter 8 is only visible, if the job was posted by the agent’s
team.

• product(<Identifier1>,<Numeral2>,[consumed(<Id3>,<Num4>),

...,tools(<Id5>,<Num6>),...]) denotes a product in the simulation.
Parameters: 1. name 2. volume 3. item name 4. amount 5. item name
6. amount
Note: If the list is empty, the product cannot be assembled.

• ranking(<Numeral>) indicates the outcome of the simulation for the ve-
hicle’s team, that is its ranking.

• requestAction indicates that the server has requested the vehicle to per-
form an action.

• role(<Identifier1>,<Numeral2>,<Numeral3>,<Numeral4>,

[<Identifier5>,....]) denotes the agent’s role as defined in the con-
figuration.
Parameters: 1. role name 2. speed 3. load capacity 4. battery capacity

9

5. a tool the agent can use (containing list is of arbitrary length, possibly
empty)

• route([wp(<Numeral1>,<Numeral2>,<Numeral3>),...]) denotes the
route the agent is following.
Parameters: 1. sequential id of the waypoint 2. latitude 3. longitude

• routeLength(<Numeral>) denotes the length of the route the system cal-
culated, if the agent is currently following one.

• seedCapital(<Numeral>) denotes the amount of money available to the
vehicle’s team at the beginning.

• shop(<Identifier1>,<Numeral2>,<Numeral3>,[item(<Id4>),...]) de-
notes some shop in the simulation.
Parameters: 1. name 2. latitude 3. longitude 4. item name

• shop(<Identifier1>,<Numeral2>,<Numeral3>,[availableItem(<Id4>,

<Num5>,<Num6>,<Num7>),...]) denotes a nearby shop.
Parameters: 1. name 2. latitude 3. longitude 4. item name 5. cost
6. amount 7. restock interval

• simEnd indicates that the server has notified the vehicle about the end of
a simulation.

• simStart indicates that the server has notified the vehicle about the start
of a simulation.

• step(<Numeral>) represents the current step of the current simulation.

• steps(<Numeral>) represents the overall number of steps of the current
simulation.

• storage(<Identifier1>,<Numeral2>,<Num3>,<Num4>,<Num5>,<Num6>,

[item(<Id7>,<Num8>,<Num9>),...]) denotes a storage facility.
Parameters: 1. name 2. latitude 3. longitude 4. price 5. total capacity
6. used capacity 7. item name 8. amount stored 9. amount delivered

• timestamp(<Numeral>) represents the moment in time, when the last
message was sent by the server, again in Unix-time.

• workshop(<Identifier1>,<Numeral2>,<Num3>,<Num4>) denotes a work-
shop facility.
Parameters: 1. name 2. latitude 3. longitude 4. price

• visibleChargingStation(...,<Numeral7>) denotes a charging station
the agent can see. Contains same parameters plus an additional seventh
representing the current size of the queue at this station.

Note, however, that the percepts look a little different, when annotations
(see the section on configuring EISMASSim) are activated.

10

	About EISMASSim
	Using EISMASSim
	Configuring EISMASSim
	Scheduling
	Actions and Percepts for the Logistics-Scenario

