Multi-Agent Programming Contest
MASSim Server Manual
(2016 Edition)

http://www.multiagentcontest.org/

Tobias Ahlbrecht Jurgen Dix Federico Schlesinger
June 21, 2016

New in 2016: Differences between the last year and 2016 are now marked

with boxes.
Contents
1 Starting the Programs| 2
L1 _MASSim Serverd. 2
.2 MASSim Monitor| 2
L3 MASSIm Web Server|o 2
2 Configuring MASSim| 3
2.1 General Configuration| 3
2.2 Simulation Configuration| 4
P21 Roled 7
222 Productd 8
23 Facilitied. 8
B2ZAJobs . . .o 10
............................. 11
[2.3 _Accounts Configuration| 11
P4 TRandom generation|. 12

http://www.multiagentcontest.org/

1 Starting the Programs

For Microsoft Windows we suggest that you install MSYﬂH or Cygwilﬂ in order
to run the MASSim-software taking advantage of the shell scripts.

1.1 MASSim Server
You can start the MASSim server by invoking this:
$./startServer.sh

You will then be prompted to choose a simulation. We mention the files explic-
itly. The server generates XML files, statistics etc. Please have a look at the
folders (output and backup that were generated during a run.

1.2 MASSim Monitor

In parallel you can also start the monitor which will allow you to observe the
current simulation. The monitor can be invoked like this:

$./startMapMonitor.sh

The monitor has currently two different options for the visualization. Please
have a look at the scenario description for details. Also note, this monitor
provides you with complete information. Your agents on the other hand do not
have access to complete information.

The monitor also stores the match on hard disk. You can view these files by
invoking:

$./startMapFileViewer.sh /path/where/the/files/are

1.3 MASSim Web Server

For the tournament we always provide a web server that is running on an Apache
using Apache Tomcat and RMI as well as XML and XSLT. This server is not
needed for the development of your multi-agent system, however, for the sake of
completeness we provide some information how to install it. A install script that
explains the procedure is placed in scripts/tools/. If you have any questions
please contact the organizers.

Thttp://www.mingw.org/wiki/MSYS
2http:/ /www.cygwin.com/

2 Configuring MASSim

When starting MASSim, you must provide a configuration file to the server.
Configuration files are XML-based, and a set of configuration files is already
available in the scripts/conf sub-folder of your MASSim installation. A de-
tailed explanation of the configuration file is given next.

2.1 General Configuration

The general structure of the configuration file is depicted in Fig. [1l Note, how-
ever, that we use some additional XML features that allows us to use more
than one file and reuse parts of the XML in different parts of the configuration.
Therefore, you have to look into the main file as well as into the correspond-
ing config.dtd file. You can set a starting time with time now. Also, a
debug-level was introduced. Additionally, we describe some parameters in
more detail.

<?xml version="1.0" encoding="UTF-8"7>
<conf backuppath="backup"
launch-sync-type="key"
reportpath="./backup/"
time="14:05"
time-to-launch="10000"
tournamentmode="0"
tournamentname="City2016 "
debug-level="normal" >
<simulation-server>
<network-agent backlog="10" port="12300"/>
</simulation-server>
<match>
<simulation ...> ... </simulation>

<simulation ...> ... </simulation>
</match>

<match>
</match>
<accounts>

</accounts>
</conf>

Figure 1: General structure of the MASSim configuration-file.

Tag: conf. The attributes of the conf tag are the following:

e backuppath - The path where important information of each simulation
step is stored.

e launch-sync-type - Determines whether the server is started by pressing
ENTER or after a certain time defined in time-to-launch or at time
point (defined by time). The value can be key, timer or time.

e reportpath - The path where the overall tournament results are stored.
e time - The time point for the option time.
e time-to-launch - The time for the option timer.

e tournamentmode - Defines the structure of the tournament. 0 sets it to
a round robin tournament. 1 is used when only one team should play
against all others. Finally, 2 allows one to set up all matches manually.
You have to add some code similar to the one in Fig. 2| after </match> to
make it work.

<manual-mode>
<match teaml="A" team2="B"/>
<match team1="A" team2="C"/>
<match team1="B" team2="D"/>
</manual-mode>

Figure 2: Manual mode.

e tournamentname - Sets the tournament name to this value.

e debug-level - Changes the verbosity of the output on shell. Allowed
values: debug, normal, critical, error.

Tag: simulation-server. The simulation-server tag has one child which
has two attributes. backlog defines the time intervals (in milliseconds) for
printing the debug messages to stdout or stderr respectively. The attribute
port sets the port of the server.

Tag: match. A configuration can have one or more match tags, that will be
instantiated depending on the tournamentmode attribute.

Tag: accounts. Finally, the accounts tag contains the details about the
agents that are allowed to take part in the matches.
2.2 Simulation Configuration

The simulation tag is used to specify the scenario to be run, along with all the
parameters that affect the simulation.

Tag: simulation. The attributes available for the simulation tag are the
following:

e id - An identifier for the simulation. To distinguish among different in-
stances of the simulation executed during a tournament, this identifier will
be appended to the names of the teams taking part in that instance.

e simulationclass - The name of the main Java class implementing the
scenario. For the 2016 Mars Scenario, the class that must be used here is
massim.competition2016.MapSimulation.

e configurationclass - The name of the Java class that will hold the con-
figuration data specified in the configuration child tag. For the 2016
Logistics Scenario, the class to use is
massim.competition2016.configuration.MapSimulationConfiguration.

e rmixmlobsserverhost - The host to which the scenario monitor should
connect.

e rmixmlobsserverport - The port to which the scenario monitor should
connect.

e rmixmlobserver - The name of the Java class that will translate the
current scenario state into XML data, and send it via RMI to the scenario
monitor when connected. For the 2016 Logistics Scenario, the class to use
is massim.competition2016.MapSimulationRMIXMLDocumentObserver.

e xmlstatisticsobserver - This is needed for the Apache Tomcat Connection
Status and Results page.

e rmixmlobserverweb - This is needed for the Apache Tomcat Current
Simulation and Results page.

e visualisationobserver - This defines the class for the visualization.

e visualisationobserver-outputpath - This defines the output path for
the visualization files.

e xmlobserver - This allows one to store the results of a simulation as xml
file.

e xmlobserverpath - This is the path for the xmlobserver.

A skeleton XML for the simulation tag is shown in Fig. It has two
children: configuration and agents. The configuration part is scenario-
specific, and must be in correspondence with the configurationclass specified
in the simulation attributes. For the 2016 Logistics scenario, the configuration
attributes are the following:

e maxNumber0fSteps - The number of steps that the simulation must run
until determining a winner.

<simulation ...>
<configuration ...>
<roles>
<role ...>
<roads>
<road .../>
<road .../>
</roads>
<tools>
<tool .../>
<tool .../>
</tools>
</role>
</roles>
<facilities>
<facility ...>
<location .../>

</facility>
</facilities>
<jobs>
<job ...>
<products>
<product ...>

</products>
</job>
</jobs>
<products>
<product ...>
<requirements>
<product ...>

</requirements>
</product>
</products>
<generate>

</generate>
</configuration>
<agents>
<agent ...>
<configuration .../>
</agent>
<agent ...>
<configuration .../>
</agent> 6
</agents>
</simulation>

Figure 3: Simulation XML structure

e numberOfAgents - The total number of agents that take part in the sim-
ulation run.

e number0fTeams - The number of teams that take part in the simulation
run.

e minlon, minLat, maxLon, maxLat - Max and min latitude and longitude
of the map to use.

e proximity - Determines the max lateral and vertical distance that two
elements may be from each other, to be considered to be at the same
location. It is determined as a fraction of degrees of Latitude/longitudeﬂ

e cellSize - Determines the size of the unit of distance that is calculated
when agent move (agent’s speed determines how many times this distance
is advanced in a single step). It is determined as a fraction of degrees of

Latitude/ 1ongitudﬂ
e serviceTime - The number of steps the call _breakdown_service action
will take.
e serviceFee - The amount of money the call_breakdown_service action
will cost.
2.2.1 Roles

The roles section defines the different roles that agents participating in the
simulation will assume. A role encompasses all the internal characteristics of
the agent. The following attributes should be specified for each role:

e name - The name by which this role is referenced.

e speed - The speed at which the agent moves in a single step (a posi-
tive integer). The units of distance are determined by the configuration’s
attribute cellSize.

e loadCapacity - Determines the maximum volume that the agent is able
to carry (a positive integer).

e batteryCapacity - Determines the maximum possible battery charge (a
positive integer).

The roads section determines the kind of paths that the agents of this role
can take for moving from one location to another. Each one is defined by a road
tag with a single name attribute (e.g. <roads><road name="road"/></roads>).
Currently we only define two kinds of road: road, which allows the agent to use
regular streets, and air, which allows an agent to move in straight line to its
destination.

3For simplification purposes, Latitude and Longitude are used in this regards as if its units
were uniform and they formed a perfect grid.

The tools section determines which items can be used as tools by agents of
this roles, when assembling new items. Each one is defined by a tool tag with a
single id attribute (e.g. <tools><tool id="tooll"/><tool id="tool2"/></tools>).
The available items are defined in the products section described below.

2.2.2 Products

The products section defines the characteristics of all the different items to be
used in the simulation. The following attributes should be specified for each
item:

e id - The id by which this item is referenced.

e volume - A positive integer, indicates the volume of this item, which ul-
timately limits the total number of items that an agent may carry, that
may be stored in a storage facility, etc.

e userAssembled - Either true or false, determines whether agents may
assemble this product from other products.

When the product may be assembled by agents, a list of requirements (prod-
ucts) follows. An example can be seen below. Each product in the list has three
attributes:

e id - The id of the item.

e amount - The quantity of instances of this product needed to assemble one
unit of the root product.

e consumed - Either true or false, determines whether this items are lost
during the assembly of the root product (i.e., this product is used as prime
matter), or not (i.e., this product is used as a tool).

<product id="materiall" volume="10" userAssembled="true">
<requirements>
<product id="basel" amount="5" consumed="true"/>
<product id="tooll" amount="1" consumed="false"/>
</requirements>
</product>

2.2.3 Facilities

The facilities section defines all the different facilities present in the simu-
lation. Some attributes depend on the type of the facility, but common to all
are the id of the facility, and type, which can be one either shop, workshop,
storage, dump or charging. Additionally, all facilities define their position in
the map in the sub-tag location which includes two attributes: lat and lon,
as real numbers.

The additional attributes for each type of facility are described next:

workshop:

cost - An integer indicating the cost associated to using this facility
on a single step.

® storage:

cost - An integer indicating the cost (per unit of volume) associated
to storing items at this facility.

capacity - An integer indicating the max possible total sum of the
volumes of the items stored at this facility.

e dump:

cost - An integer indicating the cost associated to using this facility
on a single step.

e charging:

cost - An integer indicating the cost per unit of battery charge at
this charging station.

rate - An integer indicating the charging rate, i.e., the number of
units of battery charge by which the charge of an agent is increased
on a single step (when the agent is indeed charged and its max charge
is not reached).

concurrent - An integer indicating the max number of agent that
may be effectively charging their batteries at this station the same
time (when these number is reached, following agents are temporarily
placed into a queue).

e shop: Shops do not define extra attributes. Instead, they define a list
of products (available for buying at that shop) as shown in the example
below. The attributes for each product in this list are:

id - The id of the item.

amount - The quantity of instances of this product that the shop
holds in stock at the beginning of the simulation.

cost - An integer indicating the price of a single unit of this item in
this shop.

restock - The number of simulation steps after which a new unit of
this item is added to the shop’s stock (0 means never).

<facility type="shop" id="shopl">
<location lat="52.3619" lon="9.7299"/>
<products>
<product id="iteml" cost="5" amount="500" restock="2" />
<product id="item2" cost="17" amount="50" restock="3"/>
</products>
</facility>

2.2.4 Jobs

The jobs section defines the system-created jobs for the simulation. Some
attributes depend on the type of job, but most of them are common. All are
described below:

e id - The id by which the job will be identified.
e type - The type of job: either priced or auction.

. firstStepAuctioxﬁ - The number of the simulation step at which this
Job shall begin its auction period.

e firstStepActive - The number of the simulation step at which this Job
shall become active (for auction jobs this means the end of the auction
period).

e lastStepActive - The number of the simulation step at which this Job
shall be finalized if it wasn’t completed.

) rewarcﬂ - The reward to give that completes this priced job (integer).

° maxRewarcﬂ - The biggest bid amount for this job that shall be accepted
if no better bid is placed (integer).

° fineﬂ- The amou

e storageld - the id of the storage facility where the items must be delivered
in order to complete this job.

The target of the job is defined as a list of products (under the sub-tag
<products>) where each product (sub-tag <product>) has just two attributes:
The id of the product and the amount required. Here is an example of an
auction job:

<job id="jobl" type="auction" firstStepAuction="50" firstStepActive="60"
lastStepActive="200" fine="10000" maxReward="20000" storageld="storagel">
<products>
<product id="materiall" amount="3"/>
<product id="material2" amount="3"/>
</products>
</job>

40Only for auction jobs.
50Only for priced jobs.

10

2.2.5 Agents

The agents part of the simulation configuration is where it is defined how
server-side teams are to be composed during the simulation. Agents defined here
will be matched with agents defined in the accounts section to be controlled
externally by the participants. This matching of agents varies in function of the
tournamentmode parameter explained in

The attributes for the agent tag are:

e team - The server-side name of the team.

e agentclass - The name of main Java class implementing the agents. For
the 2016 Mars scenario, the class to use is
massim.competition2016.GraphSimulationAgent.

e agentcreationclass - The name of the Java class that will hold the
configuration parsed from the configuration child tag. For the 2016
Mars scenario, the class to use is
massim.competition2016.GraphSimulationAgentParameter.

The configuration child tag for the 2016 Logistics scenario has three at-
tribute: roleName, which refers to the name of one of the previously defined
roles; and lat and lon that define the initial location of the agent.

2.3 Accounts Configuration

In the accounts section of the configuration file, one can configure the devel-
opers’ team that will participate in the tournament, and with which credentials
each developer-side agent will connect to MASSim to control its server-side
counterpart.

The actionclassmap has one attribute name and defines all available action
classes for the agent accounts. Each actionclass has a class attribute and an
id. An account is structured as follows:

e actionclassmap - Refers to the actionclassmap name that is used for this
account.

e auxtimeout - Additional timeout for messages. The purpose of this pa-
rameter is to give the agents some additional time to allow the server to
process the message.

e defaultactionclass - Sets the default action class.

e maxpacketlength - Defines the maximal length of on message.
e password - The password for the agent.

e team - The team name for the agent.

e timeout - The timout for messages.

e username - The user name of the agent.

11

2.4 Random generation

It is now possible to let some values of the simulation be randomly generated.
This can be done via the generate section an example of which could look like
the following snippet:

<generate products="true" facilities="true" jobs="true" agentLoc="true"

mapCenterLat="51.4885438" mapCenterLon="-0.1112036">

<products
min="14" max="20"
minVol="10" maxVol="30"
assembled="0.6"
minReg="1" maxReq="3" reqAmountMin="1" reqAmountMax="3"
valueMin="100" valueMax="150" assembledValueAddMin="80" assembledValueAddMax="100"
toolPercentage="50"

/>

<facilities quadSize="0.04">

<chargingStations density="0.9" rateMin="50" rateMax="150" costMin="1" costMax="3"
concurrMin="1" concurrMax="5"/>

<shops
density="0.8" minProd="3" maxProd="10" priceAddMin="110" priceAddMax="140"
amountMin="5" amountMax="20" restockMin="1" restockMax="5"
assembleAddMin="5" assembleAddMax="15"

/>

<dumps density="0.6" costMin="1" costMax="2"/>

<workshops density="0.6" costMin="50" costMax="300"/>

<storages density="0.8" costMin="1" costMax="6" capacityMin="7500"
capacityMax="15000"/>

</facilities>

<jobs
rate="0.2" auctionPerc="40"
productTypesMin="3" productTypesMax="5"
timeMin="70" timeMax="200"
valueMin="2000" valueMax="5000"
rewardSub="0" rewardAddMin="130" rewardAddMax="160"
badJob="0">

<auction
auctionTimeMin="2" auctionTimeMax="10"
fineSub="50" fineAdd="50"
maxRewardAdd="50"/>

<priced/>

</jobs>

</generate>

12

If anything is configured to be generated, the respective manual configuration
entries are ignored.
The parameters can be explained as follows:

e generate - the whole block

— products - true, if products should be generated

— facilities - true, if facilities should be generated

— jobs - true, if jobs should be generated

— agentLoc - true, if agents should be positioned randomly

— mapCenterLat - latitude of one point of the reachable part of the
graph (used for positioning)

— mapCenterLon - longitude of one point of the reachable part of the
graph (used for positioning)

products - block describing the generation of products

* min - minimum number of products

* max - maximum number of products

% minVol - minimum volume of a product

* maxVol - maximum volume of a product

x assembled - probability of a product needing assembly (p €
[0,1])

* minReq, maxReq - bounds for numbers of required items for as-
sembly

* toolPercentage - probability of product being a tool (p € N, 0 <
p < 100)

*x valueMin, valueMax - bounds for the (internal) value of the
product

* reqAmountMin/Max - bounds for the amount per other product
required for assembly

* assembledValueAddMin/Max - percentage (bounds) to add to a
product’s value if it is assembled
— facilities - block describing the generation of facilities

* quadSize - cellsize of a grid that is used for positioning (in °)

x chargingStations - block describing the generation of charging
stations

- density - probability of placing a charging station per quad
(or number of charging stations to place if > 1)
- rateMin/Max - bounds for charging rate
- costMin/Max - bounds for facility cost
- concurrMin/Max - bounds for charging slots
* shops - block describing the generation of shops

13

*

*

*

- density - same as density above

- min/maxProd - bounds for number of different available prod-
ucts per shop

- priceAddMin/Max - bounds for the percentage a shop adds
to a product’s price (can vary between products of the same
shop) (integer values from 0)

- amountMin/Max - bounds for the starting amount a shop sells
of a product

- restockMin/Max - bounds for a shop’s restock interval (dif-
ferent between products of the same shop)

- assembleAddMin/Max - bounds for the percentage to add to
a product’s price if it needs assembly (integer values between
0 and 100)

dumps - block describing the generation of dump locations
- density - same as density above
- costMin/Max - bounds for the facility’s cost
workshops - block describing the generation of workshops
- density - same as density above
- costMin/Max - bounds for the facility’s cost
storages - block describing the generation of storages
- density - same as density above
- costMin/Max - bounds for the facility’s cost
- capacityMin/Max - bounds for the storage’s capacity

— jobs - block describing the generation of jobs

ES

ES

rate - the exponential arrival rate of jobs

auctionPerc - probability of a job being an auction (integer
values between 0 and 100)

productTypesMin/Max - minimum/maximum number of differ-
ent products required for a job

timeMin/Max - bounds for the time a job is active
valueMin/Max - bounds for a job’s value

rewardSub/AddMin/AddMax - how much to subtract from (max)
or add (bounds) to the job’s reward

badJob - probability of a job being bad (amount is subtracted
from reward)

auction - block describing the characteristics of an auction
- auctionTimeMin/Max - bounds for the duration of the auc-
tion part
- fineSub/Add - how the fine can be modified at most

- maxRewardAdd - how much to add at most to the maximum
reward (the highest value that can be bid)

14

	Starting the Programs
	MASSim Server
	MASSim Monitor
	MASSim Web Server

	Configuring MASSim
	General Configuration
	Simulation Configuration
	Roles
	Products
	Facilities
	Jobs
	Agents

	Accounts Configuration
	Random generation

