
GOAL: A Multi-Agent Programming Language
Applied to an Exploration Game

Koen V. Hindriks and Jürgen Dix

Abstract GOAL is a multi-agent programming language based on the BDI paradigm.
It is a logic-based language that supports modular agent design based on established
software engineering principles and interaction with environments using an environ-
ment interface standard (EIS). GOAL recently won the Multi-Agent Programming
Contest (MAPC), where two teams consisting of ten agents play against each other
in order to explore and defend occupied territory on a distant planet. The MAPC
game is a complex and dynamic environment that supports EIS and thus facilitates
easy connection of a multi-agent system to an environment that is remotely run. We
describe the design of the multi-agent solution that won the competition, the EIS
interface that was used, and the MAPC scenario.

1 Introduction

The aim of this chapter is not to describe yet-another agent programming language
and claim that it is the best on the market. Developing good software for non-trivial
applications using the agent paradigm is a highly complex task depending not only
on the chosen programming language.

We strongly believe that documenting and discussing projects that use existing
agent platforms for software development is useful for a number of reasons. Only
by actually using such platforms can we learn about the effectiveness and usability
of them as well as about the issues we are facing during such projects. Based upon
findings related to the development process itself, comments by software develop-

Koen V. Hindriks
Delft University of Technology, Mekelweg 4, Delft, The Netherlands, e-mail: k.v.hindriks@
tudelft.nl

Jürgen Dix
Clausthal University of Technology, Julius-Albert-Str. 4, Clausthal-Zellerfeld, Germany, e-mail:
dix@tu-clausthal.de

1

2 Koen V. Hindriks and Jürgen Dix

ers, and facts derived from inspection of the agent software developed, insights may
be gained in how agent technology is best applied and how the application of agent
technology can be made more effective. We can learn new lessons from how soft-
ware developers or programmers actually used the tools and technology at hand and
the choices they made while doing so. We also gain more insight into the needs of
agent programmers.

In this chapter we present an example project that, given the current state of the
art, represents one of the larger coding projects that used a logic-based agent pro-
gramming language for developing multiple software agents that control non-player
characters in a dynamic and real-time gaming environment. The language that was
used is the agent programming language GOAL [8, 9, 10]. This agent platform sup-
ports an environment interface standard (EIS) [2]. The gaming environment that was
used is the Multi-Agent Programming Contest (MAPC) made available for the 2011
contest. The MAPC game is what we call here an exploration game that requires
multiple vehicles to explore an unknown map, and compete with opponent vehicles
for resources. We discuss and analyse how the winning team of MAPC 2011 de-
veloped their code base, their approach and most important design decisions and
strategies, and discuss the testing strategies that were used by the team.

The chapter is organised as follows. Section 2 introduces the GOAL agent pro-
gramming language and provides the background necessary for understanding the
project that we discuss. In Section 3 the Multi-Agent Programming Contest is intro-
duced. This section also discusses the Environment Interface Standard that is sup-
plied with the MAPC software to support easy interaction between a multi-agent
system and the simulation environment. Section 4 discusses the design and strat-
egy for the multi-agent system implemented in GOAL. Finally, Section 5 presents
lessons learned and concludes the chapter.

2 The Agent Programming Language GOAL

In this chapter, we present a project that has used the GOAL agent programming
language for programming a multi-agent system. It is one of the many agent pro-
gramming languages that support the agent-oriented programming paradigm [3].
These languages explicitly aim for the construction of autonomous software agents.
Most agent programming languages are based on the concept of a cognitive agent,
derived from the Belief-Desire-Intention (BDI) model of agency [7]. Such cogni-
tive agents maintain a mental state that typically consists of one or more variants of
the BDI components, including e.g., knowledge, beliefs, desires, goals, and/or in-
tentions. These mental states are used for representing an agent’s environment and
for decision-making or planning. In rule-based agent programming languages, rule
libraries that are provided by a programmer are used by the agent to decide what
to do next. Agents typically execute a deliberation or reasoning cycle similar to the
sense-plan-act cycle. Agent programming languages also provide support for agent

GOAL: A Multi-Agent Programming Language Applied to an Exploration Game 3

interaction by means of communication at the knowledge level [15], i.e., in terms of
what they believe and desire to achieve.

We briefly introduce the main concepts of the agent programming language
GOAL that was used by the team to program their multi-agent system (MAS) for
the Multi-Agent Programming Contest 2011. Some code snippets are provided in
Section 4. We refer the reader to [8, 9, 10] for more detailed information about the
language.

GOAL is a logic-based agent programming language for programming cognitive
agents. GOAL agents maintain a mental state that consists of beliefs and goals and
derive their choice of action from their beliefs and goals. GOAL agents also use a
knowledge base to represent conceptual and domain knowledge. The current version
of GOAL uses Prolog to represent the knowledge, beliefs, and goals of an agent.1

Prolog is a declarative programming language. A Prolog program consists of Horn
clauses, which are logical rules and simple facts [20]. These clauses represent what
is the case and what is desired; computation in Prolog is performed by evaluating
queries by means of an inferencing process. GOAL agents use Prolog for deriving
new conclusions from their beliefs about the environment and the goals they want
to achieve in combination with the knowledge that they have.

One of the main strengths of the language is that it facilitates the development of
high-level strategies for agents. GOAL is a rule-based language. The philosophy of
GOAL is that writing agent programs essentially means writing rules that determine
for each situation that the agent finds itself in what it should do in that situation.
Rules are ordered which allows for imposing a priority on what needs to be done
first by an agent. On top of this design philosophy GOAL mainly adds two things: a
basic reasoning cycle and modular programming.

GOAL supports a basic reasoning cycle that consists of two phases. The pur-
pose of the first phase is to process all events such as percepts and messages and
make sure that the agent’s mental state is up-to-date. In this phase the GOAL agent
retrieves and processes all perceptual information available from the environment.
Percepts received can be used to update the beliefs and goals of the agent. The idea
is that an agent should first make sure its mental state is up-to-date before it de-
cides on a choice of action. The second phase of the cycle is about decision making:
Agents decide what to do next. Typically, in this phase one environment action is
selected and sent to an environment (it is also possible to perform more than one
environment action in one cycle if needed). After completing the second phase, the
cycle is repeated.

The concept of a module is a key programming construct in GOAL for structuring
and writing larger agent programs. A GOAL agent is a set of modules. With each of
the phases of the reasoning cycle corresponds a built-in module. The eventmodule
corresponds to the first phase and is designed to support event processing whereas
the main module corresponds to the second phase and is designed to support de-
cision making. In addition, a special init module is available for initialising the

1 The GOAL agent programming language does not commit to Prolog or any other computational
logic in particular (cf. [9]). In principle, other languages such as Answer Set Programming or
ontology languages such as OWL might also be used.

4 Koen V. Hindriks and Jürgen Dix

mental state and other components of an agent. More importantly, however, a pro-
grammer can add and write its own set of modules for structuring and organizing
code. A module provides a container for a set of rules and thus provides an abstrac-
tion mechanism: A module can be used for coding more abstract actions as well as
for programming roles of agents.

GOAL is a multi-agent programming language and supports communication be-
tween agents. Both communication from agent-to-agent as well as broadcasting in-
formation to all other or a selected set of agents is available. GOAL also supports
the distributed running of agents in a multi-agent system on multiple machines.

The GOAL language is distributed with an Integrated Development Environment
for coding, testing, and debugging. It provides the usual program editing tools as
well as tools to analyse the code (e.g., creating an overview of predicates used in
a program). It also provides extensive debugging tools including introspectors for
inspecting agent states, stepping functionality, (conditional) breakpoints, runtime
querying and modification of agent states, tracing and logging functionality at dif-
ferent levels of granularity, and basic performance measurements of Prolog queries.

The GOAL platform, moreover, fully supports the Environment Interface Stan-
dard (EIS; [2]). EIS provides an elegant interface for interacting with environments.
It facilitates the exchange of actions from agents to an environment and the ex-
change of percepts from an environment to agents. As we will discuss below in
more detail, this allowed the team to focus completely on the strategic aspects of
the Multi-Agent Programming Contest scenario and no time needed to be spent on
low-level details related to, for example, communicating with the simulation server.

3 The Multi-Agent Programming Contest

The Multi-Agent Programming Contest has been annually organised by the CIG-
group from Clausthal University of Technology since 2005 [1]. The contest has
been initiated with the aim of putting agent programming frameworks to the test,
gaining new insights and detecting problems with these platforms that may stimu-
late research in the area of multi-agent system development and programming [13].
The focus of the contest has shifted more and more towards coordinated action
which is perceived as a key issue associated with multi-agent system design and,
therefore, should be an essential ingredient in any scenario for evaluating multi-
agent programming languages, platforms and tools. More pragmatically, the contest
is also expected to be useful for debugging existing agent platforms and tools and
for identifying the strengths and weaknesses of various platforms.

Since 2005 various scenarios have been used in the contest, including food gath-
ering (2005), gold mining (2006-2007), cows and cowboys (2008-2010), and, a
Mars scenario (2011). Scenarios have been changed to focus the contest more and
more on coordinated action. All of the scenarios, however, have required agents to
explore an unknown map. The maps used have been grids with obstacles except for
the Mars scenario which uses a graph as a map. In essence, therefore, all of the con-

GOAL: A Multi-Agent Programming Language Applied to an Exploration Game 5

test environments can be classified as exploration games. In addition, all scenarios
are competitive and require two agent systems to compete for scarce resources.

The performance of a system developed by a participating team is determined in
a series of matches where the systems contributed by various teams compete against
all other agent systems. A single match between two competing agent systems con-
sists of several simulations. Winning a simulation yields three points for a team, a
draw is worth one point and a loss zero points. The winner of the whole contest is
evaluated on the basis of the overall number of collected points in all the matches.
HactarV2, the multi-agent system discussed in the next section, scored the highest
possible score of 72 points whereas the runner-up scored 60 points.

Technically, the contest is realised by means of a test-bed environment specifi-
cally designed for the Multi-Agent Programming Contest called the MASSim (Multi-
Agent Systems Simulation) platform that provides the server infrastructure for run-
ning the contest. The contest scenario is realised as a plug-in for the MASSim plat-
form. Participating agent systems connect via TCP/IP to and exchange plain XML
messages with the simulation server. In other words, agents receive percepts en-
coded as XML messages from the server and can act in the gaming environment by
encoding their actions as XML messages and transmitting them to the server. The
MASSim test-bed supports round-based game simulations where all agents are al-
lowed to perform one action in each round. Agents need to act in real time because
the window for transmitting a valid action to the server for each agent is fixed. In
the 2011 scenario this time window has been reduced from the 4 seconds it used to
be to 2 seconds. Taking into account that participating teams are located all over the
world and connect via the Internet, which introduces latency, this means that agents
need to act well under 2 seconds to ensure they submit an action to the server in
time. After a finite number of steps the simulation server stops and the agents that
participated in a simulation receive a notification about the end of that simulation.

3.1 The 2011 Mars Scenario

The Mars scenario used in the 2011 contest concerns an exploration game on the
planet Mars [14]. The game requires a set of vehicles to explore, locate and oc-
cupy valuable zones on the planet Mars. At the start of a game, vehicles are placed
randomly on an unknown map. At first vehicles therefore need to individually ex-
plore the map and exchange information. Vehicles need to coordinate their actions
to occupy a zone of the planet that is as large as possible.

Story The story of the scenario is that water wells have been discovered on planet
Mars. The objective of a team of vehicles is to identify locations with large wa-
ter wells and to occupy those places. Because multiple companies want to profit
from this discovery, a team will have to compete for the possession of water wells.
A graph is used to represent Mars, where nodes denote locations and have a value

6 Koen V. Hindriks and Jürgen Dix

indicating the amount of water that is present in a well. The graph is mirrored to pro-
vide a fair symmetric map on which ten vehicles from each team can move around.

Roles Vehicles are each assigned one out of five different roles: explorer, sentinel,
inspector, saboteur, and repairer. Given that ten vehicles are available, each role is
evenly distributed and assigned exactly twice. Explorers can determine the amount
of water at nodes. Sentinels have a better vision to provide more information about
what happens on the planet. Inspectors can determine the roles and status of oppo-
nent vehicles. Saboteurs have the ability to attack and disable opponent vehicles.
Repairers are able to restore disabled vehicles back to a working state.

Scoring Scheme Two teams play a match over three games each with a duration
of 750 steps. The final score of a game is the total of all the step scores in that
game. Each team starts the game with ten achievement points which can be spent on
upgrades. A team can collect more points by gaining achievement points for actions
like attacking enemies and exploring the map. A zone score is determined each step
by the nodes that are controlled/guarded by the agents of a team and is computed
as the sum of the values of all the nodes in the controlled area. This means that a
zone with higher valued nodes will provide a better score. The step score then is
determined by adding the number of unspent achievement points to the zone score
of that step. This scoring mechanism thus requires a team to weigh and balance
scoring achievement points by performing particular actions such as exploring a
node or maximizing the value of the occupied zone on the map. Typically, at the
start of a game vehicles are not “connected” yet and therefore do not occupy a zone.

3.2 Support for the Environment Interface Standard

The MAPC software provides an implementation of the EIS interface [2] to facilitate
easy connection to the MAPC server. This interface automatically establishes and
maintains connections to the MASSim-server. It provides support for configuring
some parameters of the simulation, registering agents, associating agents with the
vehicles in the game, starting a simulation, perceiving the simulation environment,
and acting in it. Because the GOAL platform fully supports EIS, a programmer does
not need to concern himself with low-level details of connecting to an environment
and the functionality that MAPC provides is made available without requiring any
effort from a programmer. In addition, the support for the EIS interface by GOAL
also ensures that a programmer does not need to concern himself with the low-level
details of the XML-format for percepts and actions that is used by the MASSim-
server. Instead, a programmer can concentrate completely on how to handle these
percepts. Similarly, a programmer can focus on coding a strategy for selecting ac-
tions without any need to consider how the environment is able to process actions.

GOAL: A Multi-Agent Programming Language Applied to an Exploration Game 7

Actions and Percepts We briefly describe some of the more important actions and
percepts out of the ten actions that can be performed and out of the 33 percepts that
may be received from the simulation environment. For more details, refer to [14].

Actions have a name and some of them have a parameter which identifies a
MAPC entity by its name. A saboteur can perform an attack on any vehicle that
is in the same location by attack(<Identifier>) and the vehicle can use the
action parry to defend against an attack. Upgrades can be bought by performing
buy(<Identifier>). A vehicle moves to a neighbour vertex by performing
goto(<Identifier>), which has an energy cost equal to the weight associated
with the traversed edge. The actions probe and survey yield, respectively, the
amount of water present on the current vertex and the weights of visible edges.

An action may cost energy, health, and achievement points (money). These costs
vary depending on the success or failure of the action, and on whether the agent is
in a normal or disabled state. Actions may fail at random with a certain probability
and may yield achievement points for six different types of achievements that can be
realised. Achievement points can be scored by probing a specific number of nodes,
surveying a specific number of edges, inspecting a specific number of opponent
vehicles, performing a specific number of successful attacks, performing a specific
number of successful parries, and by obtaining points for a zone that is occupied.

Just like an action a percept consists of a name followed by a (possibly empty)
list of parameters. Besides names represented by <Identifier> a percept may
also provide numerical information represented by <Numeral>. Percepts differ
per individual vehicle and depend on the location and range of sight of the vehi-
cle. Percepts are omitted with a certain probability by the server. The Mars simu-
lation environment provides a large number of different percepts to inform agents
about what is going on during the game. Agents are informed about their role, the
actual and maximal amounts of energy, health, and strength they can have, their
visibility range, whether an action was performed successfully or not, the amount
of money (achievement points) available to the team, the total number of vertices
and edges present in a simulation, the current round number, and the current (zone)
score. The percept achievement(<Identifier>) indicates an achievement
that has been realized. position(<Identifier>) provides the name of the
vertex the vehicle is on. probedVertex(<Identifier>,<Numeral>) and
surveyedEdge(<Identifier>,<Identifier>,<Numeral>) yield, re-
spectively, the result of a probing and survey action. Several percepts such as
simStart, which indicates the start of a simulation, are available that inform
agents about the current state of the simulation and the server.

4 Developing A Multi-Agent Program for MAPC

This section provides a detailed overview of the code development process of the
multi-agent system HactarV2. HactarV2 performed exceptionally well during the
contest and won every single one of the 24 simulation games against eight other

8 Koen V. Hindriks and Jürgen Dix

teams. The MAS has been programmed completely in the agent programming lan-
guage GOAL. One of the strengths of GOAL is that it facilitates the development
of high-level strategies for agents by providing a declarative way to represent and
reason about an agent’s beliefs and goals.

We provide some information and statistics about the project to indicate the
project’s size and effort that went into developing the multi-agent system. The agent
system has been developed by a team of six students at the Delft University of Tech-
nology (henceforth referred to as the team). All team members were familiar with
GOAL because it is being taught as a first year bachelor course in the Computer
Science curriculum at Delft University of Technology. The agile software develop-
ment approach Scrum [19], supported by the open-source platform iceScrum[12],
has been used to manage the project. The team decided not to use an agent-based
development methodology such as Prometheus[17] because of a lack of experience
with these methodologies. In total the team spent roughly 500 man hours on the
project. About 60% of the time was spent on implementing and debugging the multi-
agent strategy and the remaining 40% was spent on system performance and other
problems. The final code base consists of 1758 lines of code spread over 18 files.

The multi-agent system has been run on a single high-end desktop computer
consisting of an Intel core i7-870 quad-core CPU running at 3.53 GHz, and 8 GB
of DDR3 RAM running at 1600 MHz. The option of distributing the MAS on mul-
tiple machines was considered as a possibility, mainly for performance reasons, but
because the MAS turned out to be efficient enough to run on a single machine this
option was not investigated any further. The team considered the development on a
single machine to be easier. This poses a challenge because the MAS needs to con-
trol ten non-player characters that each individually need to act within a two second
time frame. As explained, because communication with the server over the Internet
takes time as well, in fact this means that each agent needs to decide on an action
within about a 100ms (given that agents take turns on a single machine).

In the remainder of this section, we discuss the design of the multi-agent system
(Section 4.1), the overall flow of control (Section 4.2), the ontology that was devel-
oped (Section 4.3), the testing strategies of the team (Section 4.4), and briefly assess
the code base against a set of proposed design guidelines (Section 4.5).

4.1 Design of the HactarV2 MAS

The design of the HactarV2 MAS has been based on several observations related
to the game. Most importantly, two phases may be distinguished within the game:
a first phase in which agents do not yet act as a team (initially agents are randomly
placed on the map) and a second phase in which agents act as a team in order to
occupy valuable zones on the map. The 2011 MAPC map generator produces maps
that have a single cluster of higher valued nodes more or less at the center of the
map. Because of this the two phases can be clearly distinguished from each other
based upon the fact whether or not this zone has been identified. The main strategy

GOAL: A Multi-Agent Programming Language Applied to an Exploration Game 9

therefore consists of finding these nodes of highest value by means of explorer vehi-
cles and, when such a node (called the optimum by the team) is found, informing all
other agents about this node so they will start moving towards this node as well. The
second phase is called the swarming phase because agents are perceived as being
part of a swarm that aims at occupying a zone of valuable nodes that is as large as
possible.

Because the MAS identifies a single node as the “center” of the optimum zone
at most one swarm will be created. Agents that are part of this swarm identify the
highest valued node directly outside the zone occupied by the swarm and move
towards that node. By using this tactic the swarm will always expand in the direction
of the highest valued nodes that are not yet owned by the MAS.

Finally, in games where it is difficult to occupy a large, valuable zone, the points
that are obtained by achievements can determine the difference between winning
and losing. Based on the observation that attack and parry actions yield the most
achievement points it was decided to focus on these achievements. Of course, in-
spections of opponent vehicles and probing nodes, for example, also need to be
performed to do well in the game.

It is clear that this general design of the MAS strategy completely depends on a
proper understanding of the MAPC simulation environment. Such an understanding
comes about only after running a MAS in the environment. This suggests that initial
experimentation with and testing of a MAS in an environment is a very important
aspect of designing a MAS.

Decentralised Coordination and Communication Strategy One of the main
challenges of the Agent Contest is to design a decentralised multi-agent system that
is able to strategically compete with other agent teams. This excludes, for example,
the design of a MAS with a central manager that has access to all information avail-
able in the MAS and sends instructions to individual agents what to do. The team
decided to address this challenge by designing a strategy of HactarV2 that is based
on implicit coordination between agents.

Another reason for choosing a decentralised design over a centralised design that
uses a managing agent is that a decentralised design may reduce the need for com-
munication if properly designed. A managing agent that coordinates the activities of
all other agents creates overhead because all information needs to be made available
to this manager agent and instructions need to be send back to these agents, which
can significantly impact performance.

In order to minimize the communication between agents, agents were designed to
base their decisions mainly on the information that is perceived by the agent itself.
The main exception concerns the information that is obtained by different agents
about the map. Map information is shared by communication between agents be-
cause more knowledge about the map can be used to optimize the exploration pro-
cess and allows agents to prevent doing probe and survey actions twice. Sharing this
information may require each agent to process up to 90 messages that are received
from the other nine agents per round. Because all agents have to process received
map information special attention has been paid to optimizing the updating of an

10 Koen V. Hindriks and Jürgen Dix

agent’s beliefs with this information. Although in a centralised design only the cen-
tral manager would maintain a map and need to perform such updates, this single
agent would still have to process all information received from all other agents.

In addition to messages about the map, messages with requests for repairs are
exchanged between disabled agents and repairer agents and messages with infor-
mation about the location of opponent agents are exchanged between non-saboteur
agents and saboteur agents. Communication has been optimised by making sure
that an agent will only send a message if it knows that the receiving agent does not
perceive this information itself (which can be deduced from local information and
previous messages).

One of the key issues that needs to be addressed in the design of a decentralised
multi-agent system concerns the question how to avoid that agents perform the same
action. Decisions of agents on the action it will perform need to be coordinated to
avoid doing the same thing twice. To this end, agents in the HactarV2 MAS have
been equipped with the capability to predict what other agents will do. Using a sim-
ple agent ranking principle each agent then can decide by itself which action to
perform and rule out conflicts. For example, this principle is used to decide which
out of multiple agents on the same edge of the occupied zone will perform a move
to another node to expand the zone. The basic idea is simple: Agents that are located
on the same node are ranked and assigned a unique number called the agent’s rank.2

This rank is used to arbitrate between multiple agents that are about to perform the
same action. This mechanism allows agents to divide tasks without having to com-
municate and ensures that each agent performs a unique action whenever possible.

The design choice to develop a decentralised MAS for the MAPC environment
has raised some interesting issues that need to be taken into account. Two issues
stand out: The design needs to explicitly deal with minimizing communication over-
head and the prevention of the duplication of effort by agents. One mechanism for
dealing with the latter issue used in the HactarV2 team is prediction of what other
agents may do. An interesting topic for future research is the question whether, and
if so, which, alternative mechanisms may be employed to the same end.

Agent Roles and Strategies Apart from the overall MAS strategy discussed above,
various goals and strategies were designed and identified at the agent level including
strategies for specific agent roles, for defence, and for buying upgrades.

The main goal of explorer agents at the start of the game is to locate the highest
valued node on the map, called the optimum. Once this node has been found, it is the
task of the explorer agent to communicate the name of this node to the other agents
and start forming a swarm that occupies the zone around this node. The strategy
for finding the optimum consists of performing probe, survey and goto actions
according to a set of specific rules: Always probe a node if it has not been probed
yet and survey any edges that have not been surveyed yet. The agent then will go to
a node that has not been probed yet only if (i) this node is connected to the current
and last visited node and (ii) the current node has a lower value then the last visited

2 This can be done, for example, by using the fact that GOAL attaches numbers to names in order
to create unique names for each agent.

GOAL: A Multi-Agent Programming Language Applied to an Exploration Game 11

one. If there is a neighbouring node which has a higher value than the current one,
the agent will go there. The agent will also try to go to a neighbouring node that is
not close to a (potentially) dangerous opponent but the agent will take a chance in
case there is no such node. Otherwise the agent will go back to the last visited node,
if unexplored options are available at that node. The agent will conclude that the
optimum has been found if no move can be made any more. This conclusion may
not always be right but turned out to work well in practice. Once the “optimum” has
been found, an explorer agent will team up with the other agents and start swarming
around this node. It will continue to probe nodes as doing so allows for finding even
higher valued nodes than the currently believed optimum.

The defensive strategy of an explorer is to move away from nodes it considers
unsafe. A node is considered to be unsafe if an opponent agent is located on that
node that is either a saboteur or its role is unknown.

A sentinel agent basically uses the same exploration strategy as explorer agents.
The defensive strategy of a sentinel is to parry opponent saboteurs. If successful,
parry achievements are gained. If the opponent’s role is unknown, a repairer will
also initially parry. However, if no attack was performed, with a 50% chance, a
sentinel agent will ignore opponents with unknown roles on the same node.

An inspector agent also uses the same exploration strategy as explorer agents.
The difference is that an inspector agent gives priority to inspecting opponents in
order to identify saboteurs, to keeping track of the status of these agents (by repeat-
ing inspection of these agents every 50 rounds), and to sharing this information with
all other agents. The defensive strategy of an inspector is to move away only from
known opponent saboteurs.

The main goal of repairer agents is to repair friendly disabled agents. Priority
is given to repairing a disabled repairer agent and repairs of other agents are inter-
rupted when a repairer is itself disabled or upon receiving a request from another
repairer agent. Disabled agents request a repairer agent for help and will start mov-
ing towards the closest repairer. They send a path to the repairer they are moving to
which prevents the repairer from having to calculate the same path. Repairers use
the same defensive strategy as sentinels.

The main goal of saboteur agents is to disable opponent agents. These agents
move towards a nearest and last known location of an opponent agent to attack that
agent. Tests showed that this strategy reduced the effectiveness of opponent teams.
Saboteurs do not have a defensive strategy but are designed to be superior to any
opponent agent by means of HactarV2’s buying strategy to which we now turn.

Buying is an important aspect of the game but the team considered achievement
points (money) more important and they decided to try to spend less money than
the opponent does. The reason is that the amount of money available each round
has a high impact on the score for that round. Although the team experimented with
sentinels that buy sensors to increase visibility range, this performance gain was
considered insufficient compared to the costs and the team decided to only upgrade
saboteur agents. Upgrades are bought right at the start of the game and throughout
when it is discovered that upgrades are needed to match opponent health or strength.
Upgrading is aimed at two things: (i) saboteurs have 1 health point more then the

12 Koen V. Hindriks and Jürgen Dix

maximal strength of opponent saboteurs and (ii) the strength of saboteurs is at least
equal to the maximal health of opponent saboteurs. If both these goals are realised,
saboteur agents will survive opponent attacks while disabling opponents by a single
attack. The initial investment at the start of the game means that the score often is
lower than that of opponents in the first 100 or so steps but it starts to pay off in the
remainder of the match. See Figure 1 for an example game illustrating this.

Fig. 1 Scores HactarV2(Gray) vs TUB(Black)

The fact that the exploration strategy is among the most complex strategies
matches the fact that the MAPC environment is what we have called an exploration
game. It is obvious that in a game of competition that has entities with different roles
agent specific role and defensive strategies need to be designed. More interestingly,
however, is the fact that the design of the buying strategy is derived from the results
of extensive testing, which highlights again the importance of this activity.

4.2 Control Flow of the Multi-Agent System

GOAL agents execute an Observe-Orient-Decide-Act (OODA) loop [5].3 At the start
of a reasoning cycle of an agent, events including percepts and messages are col-
lected (Observe) and processed by means of so-called event rules (Orient). This

3 In many areas of competitive activity, the theory is that if you can cycle through the OODA loop
faster than your opponent, you have the advantage.

GOAL: A Multi-Agent Programming Language Applied to an Exploration Game 13

selectPercepts

surveyVertices

event module

L
A L

A

commonPercepts

L
A

L
A

role specific
percept module

L
A

Beginning reasoning cycle:

(a) First part

selectReiveMail

role specific
receive mail

module

L
A L

A

commonReceiveMail

L
A

L
A

disabledReceiveMail

L
A

event module
(continued)

clearMailBox

L
A

(b) Second part

Fig. 2 Control flow of the event module

14 Koen V. Hindriks and Jürgen Dix

ensures that an agent can make a decision based on the most up-to-date information
available. A decision on what to do next (Decide) is made using so-called action
rules. Upon making a choice, the action selected is sent to the environment (Act).

The control flow of this cycle matches the general structure of a GOAL agent
program. More specifically, the event module of a GOAL agent corresponds to the
Observe-Orient part of the loop and its main module with the Decide-Act part of
the loop. A programmer can add additional structure to the agent’s cycle by adding
as many user-defined modules as needed. For example, code related to percept han-
dling, communication, navigation, and roles can be placed in separate modules.

A more detailed overview of the structure and flow of control of the event mod-
ule is provided by the diagrams in Figures 2(a) and 2(b). Horizontal rectangular
boxes in the figures refer to particular modules and sub-modules whereas vertical
rectangular boxes indicate the flow of control. The notation LA in the latter boxes
indicates that the order of rule evaluation in the corresponding module is Linear and
that All applicable rules need to be applied (in order). This linear-all style of rule
evaluation is the default mode for the init and event modules. In all other modules
the default mode is a linear style mode of evaluation where only the first applicable
rule is applied. Using the order option the rule evaluation style of a module can be
changed. This explains the fact that the sub-modules such as selectPercepts,
etc. are also indicated in Figure 2 to use linear-all style evaluation.

An agent starts a new cycle upon receiving information from the simulation
server that a new round has started. The commonPercepts module handles the
percepts that every agent uses. The surveyVertices module processes vertex-
related percepts and broadcasts this information to the other agents if a successful
survey action just was performed. Next role specific modules handle any role
specific percepts. The selectReceive module then processes messages, which
in a similar fashion uses various sub-modules. For example, a disabled agent uses
module disabledReceiveMail to handle messages specific to disabled agents.
The clearMailbox module finally cleans the mailbox of an agent by deleting all
received and sent messages.

After all events are processed and the mental state of the agent is made up-to-
date again, the agent decides what to do next in the main module. Instead of pro-
viding a flow diagram for this module instead we list the code in Figure 3. As ex-
plained above, the rule evaluation in this and user-defined modules is linear style.
This means that the action rules in these modules are evaluated one by one from top
to bottom and only the first applicable rule is actually applied. If no decision has
been made yet (not(doneAction)), first it is checked whether the agent is dis-
abled and the dissabled module is entered in that case to ensure the agent gets
itself fixed as soon as possible. A special case where the MAS is in control of the
entire map (allMapAreBelongToUs4) because all opponent agents are disabled
is checked next which is handled by the superioritySelect module. Only if
none of these cases apply enter agents their role specific modules. Finally, if there

4 See http://nl.wikipedia.org/wiki/All_your_base_are_belong_to_us.

GOAL: A Multi-Agent Programming Language Applied to an Exploration Game 15

are no role specific tasks that need to be performed these modules are exited and an
agent will try to swarm, or, if that is not an option explore the map.

main module{
program{
if bel(not(doneAction)) then {

if bel(disabled, not(role(’Repairer’))) then disabled.

if bel(allMapAreBelongToUs) then superioritySelect.

if bel(role(’Repairer’)) then repairerAction.
if bel(role(’Inspector’)) then inspectorAction.
if bel(role(’Explorer’)) then explorerAction.
if bel(role(’Saboteur’)) then saboteurAction.
if bel(role(’Sentinel’)) then sentinelAction.

if bel(true) then explore.
}

}
}

Fig. 3 Main module code

The use of modules has several benefits. It facilitates programmers that are part of a
team to each focus on a specific part of code while at the same time maintaining a
clear structural overview of the MAS. It also reduces the chance of code duplication.
And last but not least it facilitates structuring code of roles by means of a pattern
similar to the Strategy design pattern [6]. The agent program of every agent in our
MAS uses the same structure while still being able to handle agent specific roles due
to code that allows an agent to adapt to the particular role associated with a vehicle.

4.3 Ontology

Besides the 33 percept predicates that agents may receive from the environment, in
the HactarV2 MAS an additional 60+ Prolog predicates were defined that are used
throughout the agent program. In a team of programmers where each programmer
codes part of the MAS it is important to have easy access to such large numbers of
predicates and their intuitive meaning. Code in a sub-module of the main module,
for example, may depend on predicates in the belief base that are updated in a sub-
module of the event module. One lesson learned from a first year bachelor project
where student teams have to program a multi-agent system for controlling bots in
the real-time, first-person shooter game UNREAL TOURNAMENT 2004 [11] is that
the teams that did a better job at maintaining an ontology outperformed other teams
and obtained better results in the final competition. For this reason, the team also
maintained an ontology for the HactarV2 MAS.

Ontology Structure An ontology for a GOAL MAS documents all predicates that
are used in the MAS code base. As Prolog is used, the ontology documents in the
usual Prolog format name/nr a predicate named name that has nr of arguments.

16 Koen V. Hindriks and Jürgen Dix

For example, enabledEnemy/2 means a predicate enabledEnemy with 2 ar-
guments is used. The ontology maintained by the HactarV2 team in the form of a
table also indicates the type of a predicate label, i.e., whether it is used for repre-
senting a belief, goal, percept, or knowledge of an agent. It also briefly explains the
intuitive meaning of each predicate, how its parameters should be instantiated, and
the code base location where the predicate is defined (i.e., the file where it is used).

Example Predicate Definitions In the remainder of this section, we briefly discuss
and illustrate two of the predicates used and their definitions. Important other predi-
cates that were defined were used, for example, for implementing the agent ranking
principle discussed above (Section 4.1), path planning5, and for keeping track of
which vehicles that are part of the team can be relied upon.

The concept of an agent being connected to others is used in the swarming phase,
i.e., the second phase of the game. It is an important concept for establishing that
nodes are owned by a group of agents. The nodes that connected agents are located
on are also called swarm positions. Informally, an agent is said to be connected if
that agent has links with at least two other agents it can depend on. A link between
two agents is said to exist if there are at most two edges that connect the nodes
on which these agents are located and these nodes are owned by the agent team.
The concept is implemented by the predicate connectedAgent/2; see Figure
4). Figure 4 also lists the most important predicates related to swarming.
Code explanation: the predicate connectedAgent/2 indicates whether the sec-
ond agent is connected to the first agent. This means the second agent must be one
or two edges apart from the first agent, and must not be considered an independent
agent (see below for the concept of independency); connectedPos/2 does the
same as connectedAgent but instead of reasoning from the position of the first
agent it reasons from any node position; edgeDest/1: finds a list of probed nodes
(and their corresponding values) that are not in the optimum zone but have a direct
edge to a node in the optimum zone; swarmPos/1: a vertex that is a swarm po-
sition is a vertex that makes sure the agent is still connected to two other agents;
expandPos/1: checks if a node is neutral (has no vertex owner) and is a swarm-
ing position; expandDest/2: finds all expanding destination (using expandPos)
from the agents current position; bestExpandDest/3: finds the highest value
expanding position to expand the swarm to from a certain node.

Recall that the map generator produces maps that have one cluster of higher
valued nodes at the center of the map. It is the goal of explorers to locate these high
valued nodes and identify the optimum node. Occupying a zone around this node is
very important during the game. Such a zone is called the optimum zone. In order
to be able to reason about this important zone, various predicates related to this
concept have been defined; see Figure 5.
Code explanation: allInformationOptimumZone/3: finds all nodes and
agents that are currently in the optimum zone. The definition uses the helper predi-

5 It is often argued that path planning is better delegated to another software component that is not
programmed using a logic-based agent programming language. The HactarV2 agents, however,
use Prolog for path planning and implement variants of Dijkstra’s shortest path algorithm.

GOAL: A Multi-Agent Programming Language Applied to an Exploration Game 17

connectedAgent(Agent1, Agent2) :- team(Team),
visibleEntity(Agent1, Pos1, Team, normal),
visibleEntity(Agent2, Pos2, Team, normal),
visibleEdge(Pos1, Pos2), not(independableAgent(Agent2)),
vertexOwner(Pos1, Team), vertexOwner(Pos2, Team).

connectedAgent(Agent1, Agent2) :- team(Team),
visibleEntity(Agent1, Pos1, Team, normal),
visibleEntity(Agent2, Pos2, Team, normal),
visibleEdge(Pos1, Pos3), visibleEdge(Pos3, Pos2),
not(Pos1 == Pos2), not(independableAgent(Agent2)),
vertexOwner(Pos1, Team), vertexOwner(Pos2, Team),
vertexOwner(Pos3, Team).

connectedPos(X, Agent) :- currentPos(Agent, Y),
not(independableAgent(Agent)), visibleEdge(X, Y).

connectedPos(X, Agent) :- currentPos(Agent, Z),
not(independableAgent(Agent)), not(X == Z), visibleEdge(Z, Y),
team(Team), vertexOwner(Y, Team), visibleEdge(Y, X).

edgeDest(List3) :- neighboursOfOptimumZone(F), !,
findall([Value, Vertex], (member(Vertex, F), vertexValue(Vertex, Value),

not(Value == unknown)), List),
not(List == []), sort(List, List2), reverse(List2, List3).

swarmPos(X) :- connectedPos(X, Agent1), connectedPos(X, Agent2),
not(Agent1 == Agent2), !.

expandPos(ID) :- vertexOwner(ID, none), swarmPos(ID).

expandDest(List3, Pos):-
findall([Value,Neighbour],(neighbour(Pos,Neighbour), expandPos(Neighbour),
vertexValue(Neighbour,Value), not(Value==unknown)),List),

not(List == []), sort(List, List2), reverse(List2, List3).

bestExpandDest(ID, Value, Pos):- expandDest(List,Pos), List=[[Value,ID]|_].

Fig. 4 Related predicates and predicate definition for connectedAgent/2

allInformationOptimumZone([], [], []) :- not(optimum(_)), !.
allInformationOptimumZone(Agents, Nodes, Neighbours) :-

optimum(Opt), team(Team),
allInformationOptimumZone([Opt], [], Nodes, Agents, Neighbours, Team),!.

allInformationOptimumZone([], _, [], [], [], _).
allInformationOptimumZone
([First|ToConsider], Visited, [First|Nodes], Agents, Neighbours, Team) :-
vertexOwner(First,Team),
findall([Agent, First], visibleEntity(Agent, First, Team, normal), Agts),
findall(Node,(e4(First, Node, _), not(member(Node, Visited))), TempNodes),
list_to_set(TempNodes, FoundNodes),
union(FoundNodes, ToConsider, NewToConsider),

allInformationOptimumZone(NewToConsider,[First|Visited], Nodes,
NewAgents, Neighbours, Team),

union(NewAgents, Agts, Agents).
allInformationOptimumZone([First|ToConsider], Visited, Nodes, Agents,
[First|Neighbours], Team) :- not(vertexOwner(First, Team)),
allInformationOptimumZone(ToConsider, [First|Visited], Nodes,
Agents, Neighbours, Team).

inOptimumZone :- me(Id), agentsInOptimumZone(A), member([Id,_], A).

Fig. 5 Related predicates and predicate definition for allInformationOptimumZone/3

cate allInformationOptimumZone/6. Using a breadth first search this latter
predicate finds all nodes owned by the team that have a path to the optimum node,
using only nodes that are owned by the team. It also finds all the agents that are
currently on these nodes as well as all neutral and enemy owned nodes that have an

18 Koen V. Hindriks and Jürgen Dix

edge to these nodes; inOptimumZone/0 checks if the agent is currently in the
zone that contains the optimum.

Maintaining an ontology facilitates keeping track of what programmers that are part
of a team are doing. The HactarV2 team has reported that using an ontology has
saved them a lot of time. They found that it is important to pay special attention to
the predicates that are used for representing the environment. An ontology also pro-
vides support for understanding the program code and communication between team
members. The GOAL platform provides some functionality for automatically iden-
tifying the predicates that are used and warns if redundant predicates are present in
a MAS. Given the usefulness of an ontology it is worth while to consider extending
this functionality and provide more automated support for maintaining an ontology.

4.4 Testing

The team has put a lot of effort into testing and analysing the results while de-
veloping the MAPC MAS and reported that extensive testing was very important
for becoming familiar with the gaming environment. We briefly discuss the various
testing strategies that were used by the team.

The Use of Dummy Agents It is important to test whether the MAS has bugs
without other agents disturbing the environment. In order to do so, dummy agents
that do nothing were used as opponents. Problems such as agents getting stuck at a
certain point, or performing no operations at all are more easily detected and solved
this way. For example, if a vehicle controlled by an agent does not perform an action,
by stepping through the code of the agent in debugging mode it is often relatively
easy to determine what goes wrong in a set-up with dummy agents (other options
such as that an agent has been disabled cannot occur in this case).

Strategy Testing Testing is not only suitable for detecting and solving errors but
also needed for measuring the performance of a MAS. In a competitive setting, an
adequate and readily available way of measuring performance is by testing a current
version of the MAS against older versions. This yields insight into whether recent
code changes have improved performance. During these tests the team observed
suboptimal behaviour that they believe could only have been found because the
strategy of the opposing MAS of an older version is still quite similar (assuming
testing is regularly performed). For the same reason why it is a good idea to test
against earlier versions it is also necessary to test against MAS written by other
teams, whenever the possibility is available. Only by doing so are issues detected
that occur only against MAS that have a very different strategy.

Debug Modules In order to properly test agent behaviour, it is necessary to create
particular situations in an environment to be able to observe the behaviour that a
program produces in those situations. In order to create such situations, it can be

GOAL: A Multi-Agent Programming Language Applied to an Exploration Game 19

useful to “manually” assign each agent a new task at runtime. For example, it is
often quite useful in the MAPC environment to direct an agent to go to a particular
location and stay there.

It is useful to have support for setting up particular situations. In GOAL the team
came up with the idea of using a combination of a what they called a debug module
and so-called debug facts. An example of such a module is provided in Figure 6.
A debug module is a module like any other module with the name debug. The
module includes a set of simple action rules that are executed when a corresponding
debug fact is part of the agent’s belief base. A debug module is used in combination
with a feature in GOAL that allows to insert new beliefs in the belief base of a
particular agent while the MAS is running. Once an agent believes a “debug fact” it
will deviate from its normal behaviour and will immediately give full priority to the
rules in the corresponding debug module. The team reported that this proved to be a
very useful debugging tool. All agents can, for example, be instructed to line up in a
particular way to make it easy to test a strategy or situation in a controlled manner.

module debug[exit=noaction]{
program{
if bel(debug(attack(X))) then attack(X).
if bel(debug(survey)) then survey.
if bel(debug(probe)) then probe.
...
bel(debug(moving(X)), currentPos(X))

then delete(debug(moving(X))) + explore.
}

}

Fig. 6 Example debug module for the MAPC

Real-Time Debugging An important problem with testing a MAS is that the en-
vironment upon which the system acts is highly dynamic. Many different agents
perform actions in real time and continuously affect the state of the environment.

A more specific testing tactic that was used while debugging the MAPC MAS
involved the use of an edited XML configuration file for a simulation which granted
the agent team two million seconds for sending actions. According to official game
settings, all agents have only two seconds to submit their actions. While stepping
agents in debugging mode, however, such a time limit is too strict and action would
not be submitted in time. In the MAPC environment this would mean that agents
that are being debugged perform skip actions, while the opponent MAS is sending
valid actions. By raising the time limit for submitting an action, the server would
“pause” during that time and it is possible to complete debugging a simulation step.
As a result, bugs were found more easily.

Testing was performed at all levels distinguished in [16], including unit, agent, in-
tegration, system, and acceptance testing. Acceptance testing in this context meant
testing the system in the environment provided by the MAPC organizers. This re-
quired some creativity, as discussed above, from the team. Testing of multi-agent
systems may be differentiated from other types of software systems and is partic-

20 Koen V. Hindriks and Jürgen Dix

ularly challenging due to the many interactions that need to be taken into account.
Agents run concurrently and interact with other agents, both by means of commu-
nication as well as by interacting in a shared environment, and need to take into
account how to coordinate their actions or compete with other agents for resources.
The metrics that needed to be considered for the MAPC competition in particular
were related to real-time performance and the performance of the MAS in terms
of the scoring scheme of the competition. Other metrics related to code quality are
discussed in the next section.

Generally speaking, the lesson learned from this project is that the more a MAS
is being tested the better it is. As noted above, testing is very important to gain a
proper understanding of the environment a MAS needs to be programmed for. Inter-
estingly, some techniques were used by the team that can be reused in other cases.
The idea of putting an agent in “debug mode” by means of debug modules in or-
der to create specific testing conditions provides only one example. An issue that
often arises while debugging MAS for complex environments concerns real-time.
Whereas for the MAPC environment the real-time pace of the game could be con-
trolled, parameters for doing so are not available for all environments. It is therefore
clear that more effort is needed to improve the tooling for effective debugging and
for developing effective testing approaches for multi-agent programs [1].

4.5 A Look at the HactarV2 Code Base

Due to space limitations, we only discuss and illustrate a small but important part of
the code base related to the swarming behaviour of agents that occupy a zone.

The swarming module shown in Figure 7 is a key module during the second
phase of a game, when the objective of the MAS is to occupy a zone that is as large
as possible. To be more precise, the objective is to obtain a higher zone score than
the opponent team. In order to do so, the swarming agents sometimes will even
reduce the occupied zone in order to maintain a steady flow of score instead of
aiming for occupied territory that is easily disrupted by the opponent. Agents will
only enter this module when they do not have any more important role specific tasks
to perform, such as repairing a broken agent or destroying an enemy saboteur that
is disrupting one of the repairers.

The module heavily depends on several defined predicates, such as for example
the swarmPos predicate defined in Figure 4. The module also uses the agent rank
system to efficiently distribute possible moves between agents. Two main cases are
distinguished in the module: the agent is (i) inside the occupied zone (dealt with by
the first rule) and (ii) on a boundary node and has options available for expanding the
zone. Using the expandDest/1 predicate these options are retrieved, the agent’s
rank is determined, and using the expandDest/2 predicate options of connected
agents are retrieved. In case the agent is allowed to expand (it has more options than
other agents), it does so using the moveSplit/2 module.

GOAL: A Multi-Agent Programming Language Applied to an Exploration Game 21

program{
if bel(insideZone, edgeDest(List), agentRankHere(Rank))
then moveSplit(Rank, List).

if bel(expandDest(List),List=[[Value,Vertex]|_],me(Id),agentRankHere(Rank))
then {

if bel(not((connectedAgent(Id, Agent), currentPos(Agent, Pos),
bestExpandDest(_, Value2, Pos), Value2 >= Value)))

then gotoSplit(Rank, List).
if bel(not(kingOfTheHill), Rank2 is Rank-1)
then gotoSplit(Rank2, List).

if bel(currentPos(Pos), not(swarmPos(Pos)), optimum(Opt),
path(Pos, Opt, [Here,Next|Path], _))

then advancedGoto(Next).
}

if true then recharge.
}

Fig. 7 Program section of the swarming module

The code fragments discussed provide some indication of the quality of the code
produced but do not provide an overall perspective. More generally, we can assess
the code quality produced by the HactarV2 team by means of a set of design guide-
lines that have been proposed for GOAL agent programs [8]. Part of these guidelines
also concern the earlier discussed topics of ontology and testing. Table 1 provides
an overview of these guidelines and indicates to what extent they were followed.

It turns out that the HactarV2 team followed most of the design guidelines for
producing quality code but not all. Overall, rules were grouped according to pur-
pose (e.g., communication rules were grouped together) and a declarative style of
programming has been used. Percepts are not all handled in the event module, how-
ever, and the deletion of facts was not always handled by the delete action. The
team explained that they did not follow these guidelines for reasons of performance
and preferred less expensive queries here instead of relatively expensive update ac-
tions. Other items that stand out concern the high level of testing and the fact that
a project management tool was used at the start of the project but not used actively
any more later on.

5 Conclusion

The design and development of a multi-agent system for an exploration game such
as the Multi-Agent Programming Contest involves all challenges that will typically
be encountered when developing a multi-agent system (MAS) for controlling a com-
plex and dynamic environment. We think that the Mars contest scenario poses some
interesting challenges with respect to coordinating agents. We discussed the pro-
gramming project and results of a team of six bachelor students that coded a MAS
they called HactarV2 that won the 2011 contest. The team had to design a winning
strategy for ten agents in a competitive environment facing ten opponent agents, de-
sign a coordination strategy for coordinating the activities of these agents, develop

22 Koen V. Hindriks and Jürgen Dix

Code Quality and Style
Predicate labels are declarative "

Beliefs represent current state "

Program does not contain redundant predicates "

Knowledge represents conceptual and domain logic "

Agent program uses goals "

Goals are declarative "

Goals are concrete "

Only action specifications for environment actions are present "

All environment actions are declared in the init module "

Specified action preconditions match environment constraints "

insert is used to add and delete is used to remove beliefs %

Action rules are only used in the main module or linked modules "

Percepts are only used in the event module %

Percepts are handled by forall rules %

Communication rules are located in the event module after percept handling code "
Rules for goal management are located at the end of the event module %

Unrelated modules are placed in separate files "

Comments (Documentation)
% predicates in knowledge base that are explained in comments 100%
% action specifications that are explained in comments 50%
% of modules the use of which are explained in comments 90%
% of program rule groups that are explained in comments 100%
Ontology (Documentation)
The ontology was kept up to date throughout the project "

Items in the ontology are properly explained "

The ontology was used by team members during the project "

Testing
Level of testing during project High
Team performed module tests "

Team performed full MAS system tests "

Team performed systematic tests on domain configurations "

Project Management
A project management tool was used during the project "

The project management tool was kept up to date throughout the project %

Table 1 Which Design Guidelines and Best Practices Were Followed?

a relatively large code base as a team, and perform extensive tests to validate the
performance and strategy of the MAS that was developed.

The code for the MAS that was developed has been completely written in the
logic-based agent programming language GOAL. This made the coding project a
useful object for our study to learn more about the actual use of such a language in a
relatively larger project. We discussed key aspects of the project including program
and strategy design, the use of modules in a team programming effort, the ontology
used for reasoning and representing the gaming environment, strategies for testing a
MAS, and we briefly discussed whether code followed proposed design guidelines.

GOAL: A Multi-Agent Programming Language Applied to an Exploration Game 23

According to the team, the concept of a module for structuring code turned out to
be of great value. Modules were used to write code for specific roles that were used
by only some agents, as well as for shared functions such as navigating the map, for
communication, etc. The team reported that being able to structure code by means
of modules facilitated the division of coding tasks among team members. Further-
more, writing code in a logic-based agent programming language as a team requires
that all team members are aware of the logical predicates that are used throughout
the code. We have called this the ontology used by the MAS. The team reported
that documenting and updating the ontology while developing code facilitated team
coordination and saved time. The team followed most but deviated also from some
of the proposed guidelines for quality code mainly for reasons of efficiency.

Concluding, we have found that developing a MAS is far from trivial. In particu-
lar testing a MAS remains one of the key challenges that seems to set development
of such a system apart from other software systems. The key differences are the po-
tentially large number of agents that may have different roles and the fact that the
MAS is developed for controlling entities in and is connected to an external environ-
ment that cannot be fully controlled. A development team needs to become familiar
with the external environment at the start of a project. This means that different test-
ing strategies may be useful at the beginning than towards the end of a project. The
team used some interesting techniques for debugging some of which can be applied
more generally to the development of other MASs as well. In particular, in a gam-
ing environment where bots compete for resources, at the start of a project it may be
more effective to use dummy opponents that pose little or no challenge while testing
initial versions of a MAS. A testing approach to evaluate whether subsequent ver-
sions of the MAS improve the system’s performance is self-play, i.e., have a newer
version play an older version.

In this chapter we have made an attempt to gain insights from a coding project
that uses a logic-based agent programming language. We believe that we have been
able to identify and illustrate some useful strategies for making such a project a suc-
cess. Much, however, remains to be done and we believe it would be useful to draw
more lessons learned from other agent-based software engineering projects. Analy-
sis of such projects is useful for identifying coding (design) patterns, best practices,
improving agent-based development tools, as well as evolve agent programming
languages in a way that enhances their use in real-world applications [18].

Acknowledgements We’d like to recognize the effort the students put into developing the Hac-
tarV2 multi-agent system and their help in explaining their code while writing this chapter. The
chapter is partly based on the MAPC paper for the HactarV2 multi-agent system [4].

References

1. Behrens, T., Dastani, M., Dix, J., Köster, M., Novák, P.: The multi-agent programming contest
from 2005-2010. Annals of Mathematics and Artificial Intelligence 59(3), 277–311 (2010)

2. Behrens, T.M., Hindriks, K.V., Dix, J.: Towards an environment interface standard for agent
platforms. Annals of Mathematics and Artificial Intelligence 61(4), 261–295 (2011)

24 Koen V. Hindriks and Jürgen Dix

3. Bordini, R., Braubach, L., Dastani, M., Seghrouchni, A.E.F., Gomez-Sanz, J., Leite, J.,
O’Hare, G., Pokahr, A., Ricci, A.: A survey of programming languages and platforms for
multi-agent systems. Informatica 30(1), 33–44 (2006)

4. Dekker, M., Hameete, P., Hegemans, M., Leysen, S., van den Oever, J., Smits, J., Hindriks,
K.V.: Hactarv2: An agent team strategy based on implicit coordination. In: Proceedings of
ProMAS’12 (to appear)

5. Eaton, J., Redmayne, J., Thordsen, M.: Joint Analysis Handbook, 3rd edn. NATO, Joint Anal-
ysis and Lessons Learned Centre (2007)

6. Freeman, E., Freeman, E., Sierra, K., Bates, B.: Head First Design Patterns, 1st edn. O’Reilly
Media, Inc (2004)

7. Georgeff, M.P., Pell, B., Pollack, M.E., Tambe, M., Wooldridge, M.: The belief-desire-
intention model of agency. In: Proceedings of the 5th International Workshop on Intelli-
gent Agents V, Agent Theories, Architectures, and Languages, ATAL ’98, pp. 1–10. Springer-
Verlag (1999)

8. The GOAL website. http://ii.tudelft.nl/trac/goal (2012)
9. Hindriks, K.: Programming rational agents in goal. In: Multi-Agent Programming: Languages,

Tools and Applications, pp. 119–157. Springer US (2009)
10. Hindriks, K., Boer, F.d., van der Hoek, W., Meyer, J.: Agent programming with declarative

goals. In: Intelligent Agents VII Agent Theories Architectures and Languages, pp. 248–257.
Springer Berlin / Heidelberg (2001)

11. Hindriks, K., van Riemsdijk, B., Behrens, T., Korstanje, R., Kraayenbrink, N., Pasman, W.,
de Rijk, L.: UNREAL GOAL bots. In: F. Dignum (ed.) Agents for Games and Simulations II,
Lecture Notes in Computer Science, vol. 6525, pp. 1–18. Springer Berlin / Heidelberg (2011).
URL \url{http://dx.doi.org/10.1007/978-3-642-18181-8_1}

12. The iceScrum website. http://www.icescrum.org/en/ (2012)
13. The Multi-Agent Programming Contest website. http://www.multiagentcontest.

org/ (2012)
14. The Multi-Agent Programming Contest 2011 website. http://www.

multiagentcontest.org/2011 (2012)
15. Newell, A.: The knowledge level. AI Magazine 2(2), 1–20 (1981)
16. Nguyen, C., Perini, A., Bernon, C., Pavn, J., Thangarajah, J.: Testing in multi-agent sys-

tems. In: M.P. Gleizes, J. Gomez-Sanz (eds.) Agent-Oriented Software Engineering X, Lecture
Notes in Computer Science, vol. 6038, pp. 180–190. Springer Berlin Heidelberg (2011)

17. Padgham, L., Winikoff, M.: Prometheus: a methodology for developing intelligent agents. In:
Proceedings of the 3rd international conference on Agent-oriented software engineering III,
AOSE’02, pp. 174–185. Springer-Verlag (2003)

18. van Riemsdijk, M.B., Hindriks, K.V., Jonker, C.M.: An empirical study of cognitive agent
programs. Multiagent and Grid Systems 8(2), 187–222 (2012)

19. Schwaber, K.: Scrum development process. In: Proceedings of the 10th Annual ACM Confer-
ence on Object Oriented Programming Systems, Languages, and Applications (OOPSLA, pp.
117–134 (1995)

20. Shapiro, L., Sterling, E.: The Art of Prolog: Advanced Programming Techniques. MIT Press
(1994)

