

The Multi-Agent Contest Competition

What does it have to do with planning?

Tristan M. Behrens (with M. Dastani, J. Dix, P. Novak)

Department of Informatics, Clausthal University of Technology

April 29, 2011

Introduction

Aim

- stimulate research in the area of multi-agent systems programming
- identify key problems
- collect suitable benchmarks that can serve as milestones for evaluating new tools, models, and techniques

Challenge: solve a cooperative task in a dynamically changing environment.

History

1st: The First CLIMA Contest – 2005

Scenario:

- grid-like world
- food and depot
- goal: collect and store food

Competition:

4 participants

2nd: The Second CLIMA Contest – 2006

Scenario:

- grid-like world
- gold and depot
- goal: collect and store gold

Competition:

- internet based environment provided by the organizers
- 3 participants

3rd: Multi-Agent Programming Contest in Association with ProMAS – 2007

Competition:

- slight changes in the environment
- 6 participants

4th: Multi-Agent Programming Contest in Association with ProMAS – 2008

Scenario and Submission:

new scenario

Competition:

7 participants

Tournament

- every team against all others
- different maps
- the team that wins a simulation gets points

The Multi-Agent Contest Scenarios

Details

Technical Infrastructure:

- TCP/IP based client/server-architecture
- the organizers provide the server
- the participants connect

Discrete Simulation: in each step do

- send perceptions to agents
- wait for agents' actions or timeout
- let agents act and evolve world

Scenario: Gold miners

Task: implement a team of agents that collects more gold than the opponent

Environment

- gold-miners
- gold
- a depot
- obstacles

Agents

- fixed visibility range (square)
- actions: move to one of four directions
- manipulate gold
- mark a cell (never used)
- push another agent (complicated)

Scenario: Cows and Cowboys

Task: implement a team of agents that cooperate in order to collect more cows than the opponent

Aim: agents have to cooperate and coordinate their actions

Environment

- Cows
- Cowboys
- Corrals
- Obstacles

Agents

- fixed visibility range (square)
- actions: move to one of eight directions

Cows

- visibility range (square)
- afraid of: agents, obstacles
- feel good: near other cows and empty spaces
- actions: move to one of eight directions
- slower than agents

What is the optimal solution to both scenarios?

What is the optimal solution to both scenarios?

We do not know!

Scenarios Summary

- structure: one on one
- discrete (time/space)
- dynamic
- not fully observable (fog)
- non-deterministic (action-failure, randomness)

Results and Outlook

Results

- roles: herders/explorers and collectors/explorers in almost all teams, differences in coordination, organisation and role-assignment
- two groups: decentralised and centralized approaches
- agent navigation: A* is employed by more and more teams

Download

http://cig.in.tu-clausthal.de/agentcontest2008

- packages: server, agent-templates
- can be used in courses

Questions

- Can the multi-agent contest scenarios be expressed as planning problems? (rhetorical)
- Are the scenarios suitable to compare multi-agent planners?
- Should the scenarios be changed?

Resources

End