) e TU Clausthal

Clausthal University of Technology

The Environment Interface Standard
for Agent-Oriented Programming

Platform Integration Guide and
Interface Implementation Guide

Tristan M. Behrens, Jiirgen Dix, Koen V. Hindriks

Ifl Technical Report Series If1-09-10

1 f1

Department of Informatics
Clausthal University of Technology

Impressum

Publisher: Institut fir Informatik, Technische Universitat Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany

Editor of the series: Jirgen Dix

Technical editor: Michael Koster

Contact: michael.koester@tu-clausthal.de

URL: http://www.in.tu-clausthal.de/forschung/technical-reports/
ISSN: 1860-8477

The Ifl Review Board

Prof. Dr. Jurgen Dix (Theoretical Computer Science/Computational Intelligence)
Prof. i.R. Dr. Klaus Ecker (Applied Computer Science)

Prof. Dr. Barbara Hammer (Theoretical Foundations of Computer Science)
Prof. Dr. Sven Hartmann (Databases and Information Systems)

Prof. Dr. Kai Hormann (Computer Graphics)

Prof. i.R. Dr. Gerhard R. Joubert (Practical Computer Science)

apl. Prof. Dr. Glinter Kemnitz (Hardware and Robotics)

Prof. i.R. Dr. Ingbert Kupka (Theoretical Computer Science)

Prof. i.R. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)
Prof. Dr. Jorg Muller (Business Information Technology)

Prof. Dr. Niels Pinkwart (Business Information Technology)

Prof. Dr. Andreas Rausch (Software Systems Engineering)

apl. Prof. Dr. Matthias Reuter (Modeling and Simulation)

Prof. Dr. Harald Richter (Technical Computer Science)

Prof. Dr. Gabriel Zachmann (Computer Graphics)

Prof. Dr. Christian Siemers (Hardware and Robotics)

The Environment Interface Standard for
Agent-Oriented Programming
Platform Integration Guide and Interface

Implementation Guide

Tristan M. Behrens, Jirgen Dix, Koen V. Hindriks

Contents

[2__Platform Integration Guide|

[2.2 Integration|

2.3.1 Agent Contest Connector 2009
2.3.2 Carriage Example|.

|3 Interface Implementation Guide|

[3.2 Environment Interface Implementation Guide|
3.3 Using the default-implementation|
[3.3.17 Using the interface|

13.4 Environment Interface Documentation Policy]|

[4_Conclusion|

13
13
13
14
16
20

22

Overview

1 Overview

Agents act and perceive in environments. Although there exist many existing
environments for agents — ranging from testbeds to commercial applications
— these environments have not been widely shared because of the difficulty
of interfacing agents with these environments. A more generic approach for
connecting agents to environments would be beneficial for several reasons. It
would facilitate reuse, comparison, the development of truly heterogeneous
agent systems, and increase our understanding of the issues involved in the
design of agent-environment interaction. To this end, we design and develop a
generic environment interface standard, called EIS. Our design has been guided
to some extent by existing agent programming platforms. These platforms are
not only suitable for developing agents but also already provide some sup-
port for connecting agents to environments. The interface standard itself is
generic, however, and does not commit to any specific platform features. The
interface proposal has been implemented and evaluated in a number of agent
platforms. We aim at a de facto standard that will transform into a real standard
in the near future.

EIS has already been implemented and tested with success. This document
contains two implementation guides, which are companion-documents to the
released-software:

1. the platform integration guide, which shows how to establish the connec-
tion between already existing platforms, and

2. the interface implementation guide, which explains how to ElSify environ-
ments, that is making environments available that adhere to the standard.

DEPARTMENT OF INFORMATICS 2

I!lL'thhUhd

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

2 Platform Integration Guide

2.1 Introduction

This document’s intent is to give an overview on how to integrate EIS with your
platform. This is supposed to be a document complemental to the EIS-javadoc.
Things that you will not find in this document, you will find in the javadoc. For
the general motivation behind EIS please refer to our technical reporﬂ

2.2 Integration

In this section we will provide an tutorial about how to integrate EIS into your
(agent programming) platform. We suppose that you have already down-
loaded the complete package.

The first thing that you have to do is adding EIS to the class-path of your
project. The package contains the file eis-0.2-1ib. jar, which includes
all the Java-interfaces and -classes that are necessary for using environment-
interfaces. Add this file to the class-path. Alternatively, if your project supports
Maveyou can add EIS as a dependency to your pom. xm1:

<dependencies>
<dependency>
<groupld>apleis</groupId>
<artifactId>eis</artifactId>
<version>0.2</version>
<scope>compile</scope>
</dependency>

</dependencies>

The next thing that you have to do is to employ the jar-loading-mechanism
that comes with EIS. Specific environment-interfaces are distributed as jar-files.
The class eis.EILoader should be used to load an environment-interface
from a jar-file and instantiate it. Use the method fromJarFile:

EnvironmentInterfaceStandard ei = null;
try {
ei = EILoader.fromJarFile (new File(jarFileName)) ;

} catch (IOException e) ({
// TODO handle the exception

Thttp://www.in.tu-clausthal.de/fileadmin/homes/techreports/
1£10909behrens.pdf
“http://maven.apache.org/

3 Technical Report Ifl-09-10

http://www.in.tu-clausthal.de/fileadmin/homes/techreports/ifi0909behrens.pdf
http://www.in.tu-clausthal.de/fileadmin/homes/techreports/ifi0909behrens.pdf

Platform Integration Guide

Note that you have to handle exceptions that are potentially thrown by the
invocation of the method. Possible causes for failure could be that the file does
not exist or that the version (EIS has a versioning-system) does not match the
required one.

Now that you have successfully instantiated an environment-interface you
have to register your agents. Since EIS is very agnostic when it comes to
the type/structure/architecture of your agents you only have to register your
agents by providing their names. The reason for this is the desired generality.
So let us assume that you have some agent, which is represented by its name.
You can register the agent like this:

String agentName = ... ; // the name of your agent
try |
ei.registerAgent (agentName) ;
} catch (AgentException e) {
// TODO handle the exception
}

Again, you have to handle possible exceptions. The invocation fails if an agent
with the same name has already registered. You can also unregister an agent if
you want to cut it off from the environment-interface:

try {
ei.unregisterAgent (agentName) ;
} catch (AgentException e) {
// TODO handle the exception
}

Here the invocation fails if the agent has not been registered to the interface.

But why do you have to register your agents to the environment-interface?
You have to do so because the next thing we are going to do is associating
agents with entities. We differentiate between agents, which we only assume
to be software-agents, and controllable entities, which provide agents with
sensory and effectoric capabilities. Due to the fact that we do not assume
anything about the nature of an environment-interface, we have to make this
distinction. Agents act and perceive through entities, entities facilitate the sit-
uatedness of agents. A nice example for an entity is a simulated elevator. An
agent that controls that elevator-entity can make it move to a specific floor and
perceive its current floor. In order to have an agent control an entity both have
to be associated. Similar to agents, entities are only represented by their name
(again a String). So assuming that you know that there is an entity with the
name "carl", you can make your agent control it like this:

try {
ei.associateEntity (agentName, "carl");
} catch (RelationException e) {

DEPARTMENT OF INFORMATICS 4

- 'l Clausthal

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

// TODO handle the exception
}

The invocation could fail, so you have to handle the exception. Note that this
a very naive way to associate your agent with an entity, because it assumes
that you know the name of the entity beforehand. You can however query the
interface for all free entities and associate your agent with the first one:

LinkedList<String> ens = ei.getFreeEntities();
try {
ei.associatekEntity (agentName, ens.removeFirst());

} catch (RelationException e) {
// TODO handle the exception
}

Which policy you apply here is your decision. There are more methods for
manipulating the agents-entities-relationship (see the javadoc). Note that you
can also query the type of an entity with the method getType. This could
be useful for example if you want to instantiate different types of agents for
different types of entities.

Now that you have your agent registered and associated with an entity, or
you have already iterated the process and associated several agents with several
entities, you want to make them act and perceive. Acting is quite simple. You
have to invoke the method performAction like this:

Action action = ... // this has to be an EIS-action
try {
Vector<Percept> ps =
eis.performAction (agentName, action);

} catch (ActException e) {

// TODO handle the exception
} catch (NoEnvironmentException e) {

// TODO handle the exception
}

The action must be aninstance of eis.iilang.Action. You could for exam-
ple instantiate an action like this:

Action action = new Action ("goto", new Ident ("up"));

It might be necessary to implement a mapping from your definition of what
an action is to ElS-actions. Note that performing an action could return a per-
cept. This is necessary for active sensing. Make sure that such return-values are
handled properly.

Note that you can sometimes (depending on the environment-interface) as-
sociate a single agent with several entities. This can be reflected by the method

5 Technical Report Ifl-09-10

Platform Integration Guide

performAction that accepts an optional array of strings (vararg language
featureE[) as the third parameter. The array should contain a subset of the set of
entities that are associated with the agent:

try |
Vector<Percept> ps =
eis.performAction (
agentName, action,"entityl","entity2"
) i
} catch (ActException e) {
// TODO handle the exception
} catch (NoEnvironmentException e) {
// TODO handle the exception
}

If the array is empty, all entities will be taken into account. Note that you can
determine the source (e.g. the entity) of each percept via the getSource-
method.

You definitely are advised to handle the exceptions. The specific excep-
tion NoEnvironmentException is thrown if the environment-interface is not
properly connected to an environment. ActException is thrown if the action
could not be executed. Possible reasons for that are reflected by the type of the
exception:

try {
ei.performAction (agentName,

} catch (ActException e) {
if(e.type NOTYPE) {

action,entities);

// TODO handle the
} else if(e.type ==
// TODO handle the
} else if(e.type ==
// TODO handle the
} else if(e.type ==
// TODO handle the
} else if(e.typ
// TODO handle the
} else if(e.type
// TODO handle the

}

exception
NOTREGISTERED) {
exception
NOENTITIES) {
exception
WRONGENTITY) {
exception
WRONGSYNTAX) {
exception
FAILURE) {
exception

} catch (NoEnvironmentException e) {

// TODO handle the exception

3http://java.sun.com/developer/JDCTechTips/2005/tt0104.html

DEPARTMENT OF INFORMATICS 6

http://java.sun.com/developer/JDCTechTips/2005/tt0104.html

I!lL'thhUhd

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

The type NOTSPECIFIC denotes that the type of the exception has not been
indicated specifically. Although we expect more detailed information about
why the method has failed, we do not enforce this. NOTREGISTERED indicates
that the agent has not registered to the environment-interface. NOENTITIES
on the other hand communicates that the agent has no associated entities.
WRONGENTITY denotes that at least one of the provided entities is not asso-
ciated with the agent. NOTSUPPORTEDBYTYPE indicates that the type of the
entity does not support the execution of the action. WRONGSYNTAX indicates
that the syntax of the action is wrong. That is the case when the name of
the action is not available and when the parameters do not match (number of
parameters or their types and structure). And FAILURE indicates that the ac-
tion has failed although it matched all mentioned requirements. For example
goto (up) could fail if the path is blocked in the respective direction.

Now let us talk percepts. There is a method to retrieve all percepts. This has
been shown to be very useful for some APL platforms. You can do this:

try {
LinkedList<Percept> percepts =
ei.getAllPercepts (agentName) ;
// TODO process the percepts
} catch (PerceiveException e) {
// TODO handle the exception
} catch (NoEnvironmentException e) {
// TODO handle the exception
}

After the invocation you have to make sure that the percepts are processed in
a proper manner. Also a PerceiveException is thrown if perception fails,
that is if the agent is not registered or has no associated entities. An instance
of NoEnvironmentException is thrown if there is no environment. Simi-
lar to performAction the method getAllPercepts supports a vararg for
restricting the call to a subset of the associated entities.

Now let’s talk about the third and final way to get percepts from the environ-
ment-interface: percepts-as-notifications. EIS supports sending percepts to the
agents on special occasions without a request to do so. That is, environments
sending percepts. In order to allow your agents to receive such percepts, your
platform has to implement the interface eis.AgentListener and its method
handlePercept (String agent, Percept percept). Furthermore you
have to register the listener to the environment-interface. The string agent of
the handlePercept-method indicates the recipient of the percept percept.
Note that it is your responsibility to make sure that the percept is passed to the
respective agent.

You can establish percepts-as-notifications like this:

class YourPlatform implements AgentListener {

7 Technical Report Ifl-09-10

Platform Integration Guide

EnvironmentInterface Standard ei;

public void init () {
eis.attachAgentListener (agentName, this);

public void handlePercept (String agent,
Percept percept) {
// TODO pass the percept to the agent

Now we will discuss environment-events. Such events are generated if 1.
the set of entities changes or is modified, an 2. if the executional-state of
the environment changes. Again you have to implement the specific interface
eis.EnvironmentListener and its methods:

class YourPlatform implements EnvironmentListener ({

EnvironmentInterface Standard ei;

public void init () {
eis.attachEnvironmentListener (this);

public void handleFreeEntity (String entity) {
// TODO handle event

public void handleNewEntity (String entity) {
// TODO handle event

public void handleDeletedEntity (String entity) {
// TODO handle event

public void handleEnvironmentEvent (
EnvironmenEvent event) {

DEPARTMENT OF INFORMATICS 8

I!lL'thhUhd

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

// TODO handle event

The method handleNewEntity is called when there is a new entity, wheras
handleFreeEntity is called when an entity is freed, and the respective meth-
od handleDeletedEntity is called when an entity is deleted. Again, you
have to come up with your own platform-specific policy for new/free/deleted
entities. We will come back to handleEnvironmentEvent in a minute.

Finally we will discuss methods of environment-management. For manag-
ing the environment you can use the method manageEnvironment:

EnvironmentCommand command = ...;
try |
el.manageEnvironment (command) ;
} catch (ManagementException e) {
// TODO Auto-generated catch block
} catch (NoEnvironmentException e) {
// TODO Auto-generated catch block
}

An environment-command can either be: starting the environment, killing
it, pausing its execution, resetting it, and initializing it with parameters. A
ManagementException is thrown when the command passed as a param-
eter is not supported. We do not assume that all environments support all
environment-commands (if any at all). A NoEnvironmentException is rais-
ed when the environment-interface is not connected to an environment.

The environment-interface can also notify about the change of the state of
the execution of the environment. Such an event can either be that the envi-
ronment has been started, killed, paused, reset, or initialized. Note that we do
not assume that all environment-interfaces notify about such events.

2.3 Included environment-interfaces

Wherein we elaborate on environment-interfaces that are included in the EIS-
package.

2.3.1 Agent Contest Connector 2009

In order to run the contest environment you have to download the package
including the MASSim-server from the Multi-Agent Contest homepageﬂ

4http://www.multiagentcontest.org

9 Technical Report Ifl-09-10

http://www.multiagentcontest.org

Platform Integration Guide

Environment description: the environment is a grid-like, partially-accessible
world. Cowboys are steered by agents. The goal is to push cows into a corral
by frightening them. More information is available at the contest homepage.

Jar-file: eis-acconnector2009-0.2. jar (included in the EIS-package).

Entities:

connectorl,...,connector10 each one is a connector to a single cowboy
in the environment.

Types of entities: this interface does not take into account different types of
entities.

Actions:

connect (Identifier, Numeral, Identifier, Identifier) instan-
tiates a connection to the MASSim-server. The first identifier is the host-
name of the server. The numeral is its port. The second identifier denotes
the user-name, the final one denotes the password. This action has to
be performed successfully in order to allow for other actions. Example:
connect ("139.174.100.201",12300, "agentredl", "dfkj39").

move (Identifier direction) moves the cowboy to aspecified direction.
Possible actions are north, northeast, east, southeast, south, south-
west, west, and northwest. Example move (east)

skip has no effect.

Percepts: all those percepts are both propagated as notifications and returned
by the getAllPercepts-method. Note that the interface implements a FIFO
of percepts that is filled every time a message from the MASSim-server is re-
ceived and whose first entry is retrieved every time the getAllPercepts-
method is called. The interface does not hold a world-model.

connectionLost indicates that the connection to the server has been lost.
simStart indicates that the simulation has begun.

corralPos (Numeral, Numeral, Numeral, Numeral) isthe position of
the corral the first two numbers indicate the upper-left- the last two ones
indicate the lower-right-corner. Example: corralPos(1,1,10,10).

gridSize (Numeral, Numeral) represents the size of the grid. The first
value is the width, the second one is the height. An example would be:
gridSize (100,100).

simId(Identifier id) denotes theid of the simulation. An example would
be: simId ("cowSkullMountain")

DEPARTMENT OF INFORMATICS 10

- 'l Clausthal

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

lineOfSight (Numeral num) indicates how far the respective entity can
see. Example: 1ineOfSight (8)

opponent (Numeral name) denotes the opponentin the current match. Ex-
ample: opponent ("StampedeTeam")

steps (Numeral num) indicates how many steps the simulation lasts. Exam-
ple: steps (1000)

simEnd indicates that the current simulation is over.

result (Identifier) represents the result of the simulation. Values could
be either win, 1ose, or draw. Example: result (win)

finalScore (Numeral) represents the final-score of the simulation. Exam-
ple: finalScore (42)

bye indicates that the overall tournament is over.

cell (Numeral, Numeral, Identifier) denotethe contentofacell. The
numerals represent the position relative to the cowboy’s current posi-
tion. The identifier represents the object. Possible values are agentally,
agentenemy, switch, fenceopen, fenceclosed, cow, obstacle,
empty, and unknown. Example: cell (-1, -1, cow)

pos (Numeral x, Numeral y) denotesthe current position of the cowboy.
Example: pos (10,15)

currentScore (Numeral) denotes the current score. An example would
be: currentScore (24)

currentStep (Numeral num) indicates the current step of the simulation.
Example: currentStep (123)

Environment-management: not supported.

2.3.2 Carriage Example

Environment description: there is a carriage on a circular-track. That track has
three distinct locations for the carriage two be on. On each side of the carriage
is a robot. Both robots can push the carriage. The environment evolves in a
step-wise manner.

Jar-file: eis-carriage-0.2. jar (included in the EIS-package).
Entities:

robotl,robot2 are the two robots in the environment.

1 Technical Report Ifl-09-10

Platform Integration Guide

Types of entities: this interface does not take into account different types of
entities.

Actions:

push pushes the carriage. If both robots push at the same time, the carriage
will not move. If only one robot pushes the carriage will.

wait has no effect.
Percepts:

step indicates that current step of the environment. Propagates via notifica-
tions

currentPos (Number) denotes the current position of the carriage, either 0,
1, or 2. Returned by getAllEntities.

Environment-management: not supported.

DEPARTMENT OF INFORMATICS 12

I!lL'tLuhUnd

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

3 Interface Implementation Guide

3.1 Introduction

This document’s intent is to provide a tutorial for creating environment inter-
faces for arbitrary environments. Also it provides a template for documenting
your environment-interfaces when making them available.

3.2 Environment Interface Implementation Guide

We would like to coin a new term: ElSification is the process of taking a given
environment, adapting it to support the Environment Interface Standard, and
distributing the result.

The overall GOAL is to take your environment (let it be some already existing
one or one that has to be developed), ElSify it and then deploy it as a jar-file,
for others to use it. ElSification means creating an environment-interface-class
— this is the main-class — that wraps your environment or connects to it.

These are the essential steps:

1. set up your project and add EIS to the class-path. The current version
containedineis-0.2-1ib. jar.

2. create the main-class that either implements the standard-interface (re-
fertoeis.EnvironmentInterfaceStandard) or extends the default-
implementation (eis.EIDefaultImpl).

3. create a jar-file from your classes and specify the main-class in the mani-
fest-file.

4. make the jar-file available.

We recommend using the default-implementation over using the standard-
interface.

You can add the jar-file to the class-path directly: Alternatively, if your project
supports Maverﬂ you can add EIS as a dependency to your pom. xm1:

<dependencies>
<dependency>
<groupId>apleis</groupId>
<artifactId>eis</artifactId>
<version>0.2</version>
<scope>compile</scope>
</dependency>

</dependencies>

5http://maven.apache.org/

13 Technical Report Ifl-09-10

Interface Implementation Guide

3.3 Using the default-implementation

The first thing you would do is create your main-class and let it extend class
eis.EIDefaultImpl:

package yourproject;
import eis.x;

public class MyEnvironmentInterface
extends EIDefaultImpl {
// TODO implement the abstract methods
}

The default-implementation already implements all needed functions. You
only have to implement methods that are specific to your environment-inter-
face.

You have to implement the abstract method isConnected:

public boolean isConnected() {
// TODO implement
}

This method is supposed to return t rue if the environment is connected to the
environment-interface and false otherwise.
Also you have to implement getAl1PerceptsFromEntity:

public LinkedList<Percept> getAllPerceptsFromEntity (
String entity)
throws PerceiveException, NoEnvironmentException {
// TODO implement
}

This method should return all percepts of the entity entity.

Now we have to discuss the definition and executions of actions. For each
action with a fixed named and fixed parameters you have to implement a
method. For example assume that you have a goto-action with a parameter
that determines the direction you would implement:

public Percept actiongoto (String entity, Ident dir)
throws ActException,
NoEnvironmentException {
// TODO implement
}

Note that this is a conventions. The action-name itself is mapped to a method-
call via Java-reflection. However if you prefer your own custom mechanism for
executing actions feel free to overwrite the performAct ion-method.

DEPARTMENT OF INFORMATICS 14

I!lL'thhUhd

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

Before discussing other methods, we have to say something about the ex-
ceptions that can be thrown in the likely event that an action fails. An in-
stance of NoEnvironmentException should be thrown if the environment-
interface is not connected to an environment. If there is a connection an in-
stance of ActException should be thrown. Please heed that that exception-
class is typed, that is it communicates more detailed information about the
action-failure by carrying a type that can be queried when the exception is
caught. Do it like this:

// the syntax of the action is wrong
throw new ActException(ActException.WRONGSYNTAX) ;

The type NOTSPECIFIC is the default type of ActException. We strongly
discourage you from using this one. We expect you to provide more detailed
information about why the method has failed. NOTREGISTERED indicates
that the agent has not registered to the environment-interface. NOENTITIES
on the other hand communicates that the agent has no associated entities.
WRONGENTITY denotes that at least one of the provided entities is not asso-
ciated with the agent. NOTSUPPORTEDBYTYPE indicates that the type of the
entity does not support the execution of the action. WRONGSYNTAX indicates
that the syntax of the action is wrong. That is the case when the name of
the action is not available and when the parameters do not match (number of
parameters or their types and structure). And FAILURE indicates that the ac-
tion has failed although it matched all mentioned requirements. For example
goto (up) could fail if the path is blocked in the respective direction.

The next method is release which is supposed to disconnect the environ-
ment-interface from the environment:

public void release () {
// TODO release the environment

}

After invoking that method isConnected should always return false.
Finally, let us discuss managing the environment. You should allow for man-
aging the environment by implementing the method manageEnvironment:

public void manageEnvironment (EnvironmentCommand command)
throws ManagementException {
// TODO implement environment-management

}

An environment-command can either be: starting the environment, killing
it, pausing its execution, resetting it, and initializing it with parameters. A
ManagementException is thrown when the command passed as a param-
eter is not supported. We explicitly do note make obligatory that you should
implement all environment-commands. If your environment for example does

15 Technical Report Ifl-09-10

Interface Implementation Guide

not support being paused than you do not have to implement the respective
commands. A NoEnvironmentException is thrown when the environment-
interface is not connected to an environment.

3.3.1 Using the interface

Instead of extending the default-implementation you can also implement the
standard-interface. The first thing you would do is create your main-class and
let it implement the interface EnvironmentInterfaceStandard:

package yourproject;
import eis.x;

public class MyEnvironmentInterface
implements EnvironmentInterfaceStandard ({

}

This is of course not everything. You have to implement the interface’s meth-
ods. Quite some of them, to be honest. Please have a look at the default-
implementation for some inspiration about how to implement those.

The first thing you should do is attaching and detaching environment- and
agent-listeners. We assume that you internally store a list of registered listen-
ers. For example you could use like in the default implementation the data-
structure Vector<EnvironmentListener> and also the thread-safe map-
ping ConcurrentHashMap<String, HashSet<AgentListener». But feel
free to use anything that fits your needs Environment-listeners are used to in-
form observers about the change of the state of execution of the environment.
Every observer that is interested in such events should register via:

public void attachEnvironmentListener (
EnvironmentListener listener) {
// TODO store the listener internally

It should also be possible to remove an observer:

public void detachEnvironmentListener (
EnvironmentListener listener) {
// TODO remove the listener from the
// internal representation

For the agent-listeners it is almost the same. These are used to send per-
cepts-as-notifications to the agents. Here you should store for each agent a set
of listeners:

DEPARTMENT OF INFORMATICS 16

- 'l Clausthal

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

public void attachAgentListener (String agent,
AgentListener listener) {
// TODO store the listener internally

Again, removing the listener should also be allowed:

public void detachAgentListener (String agent,
AgentListener listener) {
// TODO remove the listener from the
// internal representation

After that you should provide functionality that allow for (un)registering
and unregistering agent, and for (dis)associating agents with entities. To be-
gin it would be good to set-up an internal list of agents, another one for en-
tities, and some map for associating agents and entities. For example you
could use LinkedList<String> for the lists and the thread-safe mapping
ConcurrentHashMap<String, HashSet<String» for the mapping.

Please allow for registering agents:

public void registerAgent (String agent)
throws AgentException {
// TODO store internally

}

You should throw an AgentException if the agent has already registered.
Then allow for unregistering:

public void unregisterAgent (String agent)
throws AgentException {
// TODO remove form internal representation

}

Here you should throw an AgentException if the agent has not registered.
Also make sure that the list of agents can be retrieved:

public LinkedList<String> getAgents () {
// TODO return the list of agents
And make sure to to the same for entities as well:
public LinkedList<String> getEntities () {

// TODO return the list of entities

Then associate an agent with an entity

17 Technical Report Ifl-09-10

Interface Implementation Guide

public void associateEntity (String agent, String entity)
throws RelationException {
// TODO update the mapping

}

Make sure to throw an RelationException if associating the agent with the
entity is not possible. This is the case for example when the agent or the entity
are not stored in the internal lists.

After that allow for freeing an entity from all associations with agents:

public void freeEntity(String entity)
throws RelationException ({
// TODO update the mapping

}

Here you should throw an RelationException if the entity could not be
freed. That is when is not contained in the internal list of entities.
Do the same for an agent:

public void freeAgent (String agent)
throws RelationException {
// TODO update the mapping

Then remove a specific agent-entity-pair from the mapping:

public void freePair (String agent, String entity)
throws RelationException {
// TODO update the mapping

}

Again throw an RelationException if the operation fails.

After manipulating the agents-entities-relation it would be useful to allow
for querying the data-structures. You should provide a method that returns
the entities associated to an agent:

public HashSet<String> getAssociatedEntities (String agent)
throws AgentException {
// TODO return the associated entities

}

Make sure to throw an AgentException if the agent is not registered to the
interface.
And you should provide the same for an entity:

public HashSet<String> getAssociatedAgents (String entity)
throws EntityException {
// TODO return the associated agents

DEPARTMENT OF INFORMATICS 18

- 'l Clausthal

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

Here you should throw an Ent it yException if the entity has not been added
to the interface.

Finally return the list of free entities, that is a list of entities that are not asso-
ciated:

public LinkedList<String> getFreeEntities () {
// TODO return the free entities
}

Also it is necessary to return the type of an entity:

public String getType (String entity)
throws EntityException {
// TODO return the type of the entity
}

Throw an EntityException if the entity does not exist.

Now we have to discuss acting and perceiving. Entities are the ones that pro-
vide agents with sensory and effectoric capabilities. Agents act and perceive
through entities.

This is the first essential method:

public LinkedList<Percept> performAction (
String agent, Action action, String...entities)
throws ActException, NoEnvironmentException {
// TODO perform the action and return a percept

}

It should allow an agent to act through a set of his associated entities provided
as an array. If the array is empty all associated entities should perform the
action. Here you need to throw an ActException if the action fails, that
is when one or more of the entities failed to execute the action or of one or
several of the provided entities are not associated. And you need to throw an
NoEnvironmentException of the environment-interface is not connected
to an environment. Note that the return-value is also interesting. The method
can also be used to facilitate active-sensing. Some actions might just return
something simple like a "success"-Percept or something very sophisticated.
Finally you should make sure to indicate the origin-entity of each percept via
the set Source-method of Percept.
You should also implement this method for retrieving all percepts:

public LinkedList<Percept> getAllPercepts(
String agent, String...entities)
throws PerceiveException, NoEnvironmentException {
// TODO return all percepts

19 Technical Report Ifl-09-10

Interface Implementation Guide

This method is supposed to return all percepts of the entities that are asso-
ciated with an agent. Again the associated entities are provided as an array.
If the array is empty all entities are used for sensing. The method fails with
an PerceiveException if perceiving through one or several entities is not
possible, or of one or several of the provided entities are not associated. The
NoEnvironmentException is thrown if no environment is connected.

3.4 Environment Interface Documentation Policy

In order to ensure transparency and accessibility when publishing your envi-
ronment-interfaces, you should provide a documentation. That documenta-
tion should contain all necessary information, including 1. a description of
the environment, 2. the name of the jar-file that contains the environment-
interface, 3. the names of the entities that populate the environment, 4. the
types of those entities, 5. the actions of the entities, and 6. the percepts.

Please provide a description of the environment:

Environment description: the environment is a simple 3-dimensional world
with a ground level. It is populated by jeeps that are not controllable entities.
Controllable entities are unmanned vehicles, that should be used to locate the
jeeps.

After that you should say, in which jar-file the environment-interface is con-
tained, and optionally where to find that file:

’ Jarfile: uv-simulation. jar

Now you should give an overview of the different entities that populate the
environment. Please provide their names and their characteristics:

Entities:

uvl,uv2,... are several unmanned ground vehicles. There are 100 in the sim-
ulation.

Please provide the types of entities as well:

groundvehicle these are unmanned ground vehicles.

airvehicle these are unmanned aerial vehicles.

Now, denote and describe the different actions that are supported. Please
make sure to include the parameters of the actions and their meaning. And do
not forget to mention, what kind of percepts an action would return, if it was
a sensing action

DEPARTMENT OF INFORMATICS 20

- 'l Clausthal

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

Actions:

move (Identifier) moves the entity into a specific direction. Possible direc-
tions are: north, east, south, and west. Example: move (east)

useCamera uses the camera and returns the most prominent, visible object.

1iftoff lifts an entity off the ground. Only available to aerial vehicles.

land lands and entity. Only available to aerial vehicles.

Now describe the different percepts. Again please describe the possible pa-
rameters and their meaning. Also explain how the different percepts are made
available. Do you retrieve an agent via the getAllPercepts-method, by a
notification, or by both?

Percepts:

time (Numeral) indicates the current time-stamp of the simulation. Re-
turned by getAllPercepts and send as a notification every second.

currentPos (Number, Number, Number) denotes the current position of
the vehicle in the three dimensions of space. Returned by
getAllPercepts and send as a notification every second.

And finally make clear, which means for environment-management are sup-
ported:

Environment-management: the environment can be initialized with a pa-
rameter that denotes that map that should be used. All other environment-
commands are not supported.

21 Technical Report Ifl-09-10

References

4 Conclusion

Up to now, several platforms have already established support for EIS: 2APL
[6], GOAL [8], JaDex [7Z], and JasoN [3] It has been proved that connecting
these platforms is very easy, it could have been established in one day’s time. A
common trait of is the use of a two-way-converter between EIS-data-structures
to platform-specific ones.

Also up to now, several environment-interfaces have been created: two con-
nector to the Agent-Contest-server[5], one for 2009 and a second one for
2010, the elevator example[1], the well-known carriage-example[4], and the
Wumpus-world[9] (will be contained in the upcoming GOAL-release). An
environment-interface to the computer-game UnReal Tournament 2004[2] is
on its way.

References

[1] Elevator simulator homepage. http://sourceforge.net/projects/
elevatorsim/.

[2] R. Adobbati, A.N. Marshall, A. Scholer, S. Tejada, G.A. Kaminka, S. Schaffer,
and C. Sollitto. Gamebots: A 3d virtual world test-bed for multi-agent re-
search. In Proceedings of the 2nd Int. Workshop on Infrastructure for Agents,
MAS, and Scalable MAS, 2001.

[3] Rafael H. Bordini, Jomi Fred Hiibner, and Michael Wooldridge. Program-
ming Multi-Agent Systems in AgentSpeak using Jason (Wiley Series in Agent
Technology). John Wiley & Sons, 2007.

[4] Nils Bulling and Wojciech Jamroga. Rational play and rational beliefs under
uncertainty. In AAMAS '09: Proceedings of The 8th International Conference
on Autonomous Agents and Multiagent Systems, pages 257—264, Richland,
SC, 2009. International Foundation for Autonomous Agents and Multia-
gent Systems.

[5] Mehdi Dastani, Jirgen Dix, and Peter Novak. Agent contest competi-
tion - 3rd edition. In M. Dastani, A. Ricci, A. El Fallah Seghrouchni, and
M. Winikoff, editors, Proceedings of ProMAS ’07, Revised Selected and Invited
Papers, number 4908 in Lecture Notes in Artificial Intelligence, Honululu,
Us, 2008. Springer.

[6] Mehdi Dastani et al. 2APL Manual. http://www.cs.uu.nl/2apl/.

[7] Braubach Lars, Pokahr Alexander, and Lamersdorf Winfried. Jadex: A BDI-
agent system combining middleware and reasoning. In Von Rainer Unland,

DEPARTMENT OF INFORMATICS 22

http://sourceforge.net/projects/elevatorsim/
http://sourceforge.net/projects/elevatorsim/
http://www.cs.uu.nl/2apl/

- 'l Clausthal

AN ENVIRONMENT INTERFACE STANDARD FOR AOPS

Matthias Klusch, and Monique Calisti, editors, Software agent-based appli-
cations, platforms and development kits, 2005.

[8] Wouter Pasman. GOAL IDE user manual. http://mmi.tudelft.nl/
~koen/goal.php.

[9] S.]. Russell and Norvig. Artificial Intelligence: A Modern Approach (Second
Edition). Prentice Hall, 2003.

23 Technical Report Ifl-09-10

http://mmi.tudelft.nl/~koen/goal.php
http://mmi.tudelft.nl/~koen/goal.php

	Overview
	Platform Integration Guide
	Introduction
	Integration
	Included environment-interfaces
	Agent Contest Connector 2009
	Carriage Example

	Interface Implementation Guide
	Introduction
	Environment Interface Implementation Guide
	Using the default-implementation
	Using the interface

	Environment Interface Documentation Policy

	Conclusion

