
Multi-Agent Programming Contest
2011 Edition
Documentation
Tristan Behrens, Jürgen Dix, Jomi Hübner, Michael
Köster, Federico Schlesinger

IfI Technical Report Series IfI-12-01

Impressum

Publisher: Institut für Informatik, Technische Universität Clausthal
Julius-Albert Str. 4, 38678 Clausthal-Zellerfeld, Germany

Editor of the series: Jürgen Dix
Technical editor: Federico Schlesinger
Contact: federico.schlesinger@tu-clausthal.de
URL: http://www.in.tu-clausthal.de/forschung/technical-reports/
ISSN: 1860-8477

The IfI Review Board

Prof. Dr. Jürgen Dix (Theoretical Computer Science/Computational Intelligence)
Prof. i.R. Dr. Klaus Ecker (Applied Computer Science)
Prof. Dr. Sven Hartmann (Databases and Information Systems)
Prof. i.R. Dr. Gerhard R. Joubert (Practical Computer Science)
apl. Prof. Dr. Günter Kemnitz (Hardware and Robotics)
Prof. i.R. Dr. Ingbert Kupka (Theoretical Computer Science)
Prof. i.R. Dr. Wilfried Lex (Mathematical Foundations of Computer Science)
Prof. Dr. Jörg Müller (Business Information Technology)
Prof. Dr. Niels Pinkwart (Business Information Technology)
Prof. Dr. Andreas Rausch (Software Systems Engineering)
apl. Prof. Dr. Matthias Reuter (Modeling and Simulation)
Prof. Dr. Harald Richter (Technical Informatics and Computer Systems)
Prof. Dr. Gabriel Zachmann (Computer Graphics)
Prof. Dr. Christian Siemers (Embedded Systems)
PD. Dr. habil. Wojciech Jamroga (Theoretical Computer Science)
Dr. Michaela Huhn (Theoretical Foundations of Computer Science)

Multi-Agent Programming Contest

2011 Edition

Documentation

Tristan Behrens, Jürgen Dix, Jomi Hübner, Michael Köster, Federico Schlesinger

Abstract

This document is intended to convey all knowledge that is required to
successfully participate in the Multi-Agent Programming Contest 2011.
We initially provide a scenario description that contains all relevant in-
formation about the environment. Based on this scenario, it is described
all the technical specifications required to develop agents to participate
in the contest. Detailed instructions about using the software provided
by the organization is then included. This software simplifies all the
process of developing agents for theMASSim-platform, participants can
thus focus on the development of good strategies for the contest.

1 Introduction

TheMulti-Agent Programming Contest is an attempt to stimulate research in
the area of multi-agent system (MAS) development and programming (MAP)
by

1. identifying key problems,

2. collecting suitable benchmarks, and

3. gathering test cases which require and enforce coordinated actions,

that can serve as milestones for testing multi-agent programming languages,
platforms and tools. We also expect that participating at the contest helps to
debug existing systems and to identify their weak and strong aspects.

The Multi-Agent Programming Contest was initiated in 2005 and since
then it has passed through three distinct phases. The first phase began in
2005 with the “food-gatherers”-scenario, where a pre-specified multi-agent
system had to be implemented. These MASs were later examined in order
to determine the winner. From 2006 - 2007 the “goldminers”-scenario was

1

Scenario Description

used. This time it is provided an environment by means of an online-archi-
tecture, and automatically determined the winner. Then from 2008 - 2010
we ran the “cows and cowboys”-scenario, again on the same online-archi-
tecture.

We noticed that most approaches used in the agent contest in the last
years were centralized, contrary to the philosophy of multi agent program-
ming (MAP). Even the accumulated knowledge of the agents was maintained
centrally and shared by internal communication. This aspect has motivated
the definition of a new scenario.

For the 2011 Contest we would like to highlight the two following key
problems that the participants should keep in mind when developing their
multi-agent system:

1. agent cooperation and agent coordination is encouraged even more, and

2. team decentralization should be taken into account.

We think, developing good strategies for these two key problems helps to
perform well in the Contest.

This document is organized as follows. While the first two chapter con-
tains the specification and the rules of the contest, the latter ones are fo-
cused on how to use the software provided to the participants. Chapter 2
contains a full description of theMulti-Agent Programming Contest 2011 sce-
nario called Agents on Mars. There we describe the environment and the
semantics of the environment’s evolution. In the chapter 3 it is explained
how you can connect your agents on the lowest level, that is that you are
supposed to faithfully implement the client-server communication-proto-
col. This means that you are expected to establish and maintain an authenti-
cated TCP/IP connection to theMASSim-server and communicate with it by
exchanging XML-messages. In chapter 4 we explain how to start the server
that simulates the scenario providing perception and action for the agents.
Details about setting up a tournament in a local computer is also covered in
this chapter. Additionally, in chapter 5 we explain different means for de-
veloping agents with theMASSim-platform, each one on a distinct level of
abstraction. The first proposal is to use EIS1-compatible environment-interface
that implements the aforementioned communication protocol. This very
interface establishes and maintains authenticated connections to the server
and reduces acting and perceiving to invoking Java-methods and evaluating
call-backs. Finally, it is described how to develop a very simplistic dummy-
agent team that we have implemented for testing the environment. Users
can of course extend these agents with the artificial intelligence they have
in mind. These dummy-agents make use of the EIS interface.

1http://sf.net/projects/apleis

DEPARTMENTOF INFORMATICS 2

http://sf.net/projects/apleis

MAPC 2011 DOCUMENTATION

2 Scenario Description

In the following, we provide a detailed description of the Multi-Agent Pro-
gramming Contest 2011 scenario. The overall goal of the game is to control
zones of a map (graph) by placing agents on appropriate positions.

2.1 Background Story

In the year 2033 mankind finally populates Mars. While in the beginning the set-
tlers received food and water from transport ships sent from earth shortly after-
wards – because of the outer space pirates – sending these ships became too dan-
gerous and expensive. Also, there were rumors going around that somebody actu-
ally found water on Mars below the surface. Soon the settlers started to develop
autonomous intelligent agents, so-called All Terrain Planetary Vehicles (ATPV), to
search for water wells. The World Emperor – enervated by the pirates – decided to
strengthen the search for water wells by paying money for certain achievements.
Sadly, this resulted in sabotage among the different groups of settlers.

Now, the task of your agents is to find the best water wells and occupy the best
zones of Mars. Sometimes they have to sabotage their rivals to achieve their goal (
while the opponents will most probably do the same) or to defend themselves. Of
course the agents’ vehicle pool contains specific vehicles, some of them have special
sensors, some of them are faster and some of them have sabotage devices on board.
Last but not least, your team also contains special experts, the repair agents, that
are capable of fixing agents that are disabled. In general, each agent has a special
expert knowledge and is thus the only one being able to perform a certain action. So
your agents have to find ways to cooperate and coordinate themselves.

2.2 The Challenge

In this year’s Contest the participants have to compete in an environment
that is constituted by a graph where the vertices have an unique identifier
and also a number that determines the value of that vertex. The weights of
the edges on the other hand denotes the costs of traversing the edge.

A zone is a subgraph (with at least two nodes) whose vertices are colored
by the graph coloring algorithm introduced in Section 2.3. If the vertices of
a zone are colored with a certain team color it is said that this team occupies
this area. The value of a zone determined by the sum of its vertices’ values.
Since the agents do not know a priori the values of the vertices, only probed
vertices contribute with their full value to the zone-value, unprobed ones
only contribute one point.

The goal of the game is to maximize the score. The score is computed by
summing up the values of the zones and the current money (cf. Section 2.7)

3 Technical Report IfI-12-01

Scenario Description

Figure 1: A screenshot.

for each simulation step:

score =

steps∑
s=1

(zoness + moneys)

Where steps is the number of simulation steps, and zoness and moneys are
the current sum of all zone values and the current amount of money respec-
tively.

Figure 1 shows such a scenario. The numbers depicted in the vertices de-
scribe the values of the water wells while the distance of two water wells is
labeled with travel costs. The green team controls the green zone while the
blue team has the smaller blue zone. The value of the blue zone, assuming
that all vertices have been probed by the blue team, is 24.

DEPARTMENTOF INFORMATICS 4

MAPC 2011 DOCUMENTATION

2.3 Graph Coloring Algorithm

The graph coloring algorithm is used to determine the zones that a team is
occupying. We firstly present the formal definition and afterwards explain
it via an example.

Definition 2.1. Let V be the set of vertices, E the set of edges, ag the set of
agents, and T the set of team names. Furthermore let ag(v) denote the set of
agents standing on vertex v ∈ V . A graph coloring is a mapping

c : V → T ∪ {none}.

The coloring is subject to change over time. We say that a vertex v is col-
ored if c(v) 6= none. The coloring is determined by the following calculation,
consisting of phases that are executed sequentially:

1. The first phase of the calculation only involves the coloring of vertices
that have agents standing on them. c(v) = t iff ag(v) 6= ∅ and t is the
name of the team that dominates the vertex. We say that a vertex v is
dominated by t if t has the majority of agents on v. If no team domi-
nates the vertex, then c(v) = none.

2. The coloring is extended to empty vertices that are direct neighbors of
dominated vertices. Formally, c(v) = t if ag(v) = ∅, t is the name of the
team that dominates the largest subset of neighbors

St = {vn | (v, vn) ∈ E, c(vn) = t, c(vn) 6= none, ag(vn) 6= ∅}

of v, with | St |> 1. Note that a team needs to dominate at least two
neighboring vertices of an empty vertex to be able to color that empty
vertex.

3. Some of the vertices that where colored with a team name t in the
previous two steps might represent a frontier that isolates a part of the
graph from all the other teams’ agents. We say that an empty vertex
v has been isolated by a team t (and thus c(v) := t) iff for all agents ag
belonging to a team t′, where t′ 6= t, there is no path from agn to v that
does not include a vertex v′ such c(v′) = t.

4. c(v) := none iff the other conditions are not satisfied.

For the coloring algorithm, we are only consider the agents that are not
disabled. The definition of disabled agents is given later in Section 2.6.

An example of graph coloring in an hypothetical world configuration is
depicted in Figure 2. Pictures (a), (b) and (c) show the result of executing the
coloring calculation phases 1, 2 and 3 respectively. For the sake of improving
visibility, all edges whose two vertices are colored in the same team’s color,

5 Technical Report IfI-12-01

Scenario Description

are also shown in that same color, but internally this has neither meanings
nor implications.

In detail, phase 1 colors such vertices in a certain color regarding the color
of the majority of agents. For instance, in Figure (a) the top right vertex is
colored in green because there are three green agents but only one red agent
standing on that vertex. When there is a draw the vertex does not belong to
a team.

In phase 2 (Figure (b)) we look at the direct neighbors of the already col-
ored vertices. We color such a neighbor in a certain team color when there
is an edge from this uncolored vertex to at least two other vertices that are
colored in that particular team color. We are taking again the majority into
account, i.e., the color of the vertex is finally determined by counting for
each team color the connected vertices and choosing the best result. If there
is a draw the vertex is not colored at all.

Phase 3, finally, colors all vertices that are not reachable by other teams
without crossing the already colored vertices. One can see it as a border that
is separating parts of the graph. After executing phase 3 we have defined the
zones of all teams.

Picture (b) clearly shows how the green team has built a closed frontier
around a set of empty vertices, which are then colored in picture (c). In pic-
ture (d), an agent of the red team has “broken” the frontier, making some of
the vertices inside of it not isolated anymore.

2.4 Teams & All Terrain Planetary Vehicles

We define five roles (see Table 1), where each role describes the available ac-
tions (actions an agent can perform) for the All Terrain Planetary Vehicle
(ATPV), its maximum energy, its maximum health, its strength and its visi-
bility range. While the energy is important for executing actions, the health
determines whether an agent is still able to perform all actions or just a small
subset. The strength defines how strong a sabotage will be and the visibility
range describes how far an agent can see. The concrete actions are described
in Section 2.5. The teams consist of 10 agents and for each pair we assign
them the following roles:

2.5 Agent Actions

An agent can perform some of the following actions regarding its role. The
result of that action is perceived by the agent automatically, i.e., the infor-
mation is sent to it in the next percept.

skip This action is always successful, costs no resources and the effect is
that the agent does not do anything.

DEPARTMENTOF INFORMATICS 6

MAPC 2011 DOCUMENTATION

(a) Coloring phase 1 (b) Coloring phase 2

(c) Coloring phase 3 (d) Breaking a frontier.

Figure 2: Coloring phases

7 Technical Report IfI-12-01

Scenario Description

Explorer Actions: skip, goto, probe, survey, buy, recharge
Energy: 12
Health: 4
Strength: 0
Visibility range: 2

Repairer Actions: skip, goto, parry, survey, buy, repair,
recharge

Energy: 8
Health: 6
Strength: 0
Visibility range: 1

Saboteur Actions: skip, goto, parry, survey, buy, attack,
recharge

Energy: 7
Health: 3
Strength: 4
Visibility range: 1

Sentinel Actions: skip, goto, parry, survey, buy, recharge
Energy: 10
Health: 1
Strength: 0
Visibility range: 3

Inspector Actions: skip, goto, inspect, survey, buy, recharge
Energy: 8
Health: 6
Strength: 0
Visibility range: 1

Table 1: The different roles.

recharge This action increases the current energy of the agent by 20 per-
cent. The result can be successful, or failed if attacked by an op-
ponent. Of course, it does not cost any resources.

attack If an agent wants to sabotage some other agent it has to perform
this action. The action requires a parameter (the identifier of the target)
and can be successful, or failed because of lack of energy. Also, it
can be parried. Lastly, it can fail because of a wrong parameter, i.e.,
wrongParameter is the result. Also, the current energy is decreased
about 2 points.

parry This action parries an attack and costs 2 points of energy points. Only
if an attack is actually taking place it is successful, otherwise it is
useless. The action can also fail because of too low energy, i.e., the
result is failed.

goto The agent moves from one vertex to another by executing this action.

DEPARTMENTOF INFORMATICS 8

MAPC 2011 DOCUMENTATION

The reduction of the current energy is determined by the traveling cost,
i.e., the weight of an edge. The action needs a parameter, namely the
id of the vertex it wants to go to. The result of that action is, failed
when the current energy is too low and the current energy is decreased
by 1, wrongParameter if the parameter is incorrect or successful
otherwise.

probe Without the team knowing the exact value of the node, it is set to 1
when it comes to the computation of the zone score. Only if at least
one agent of the team analyzes the water well the team gets the full
value of that vertex (the value is then incorporated in the next per-
cept). The action costs 1 points of energy. A probe action can fail (re-
sult: failed) for different reasons: lack of energy or being attacked by
another agent. Otherwise it is successful.

survey With this action (costs: 1) the agent can get the weights of the edges
(in the next percept). If the action is not successful it failed be-
cause of too low energy or the agent was attacked in that moment.

inspect This action (costs: 2) inspects all opponents (the internals) on the
vertex the agent is standing at the moment as well as all direct neigh-
bors. The result can be again failed because of lack of energy or being
attacked, and is successful otherwise even if there is no agent at all.

buy The buy action (costs: 2) is more complex. It’s purpose is to increase
your agent’s maximum health, maximum energy, visibility range or
maximum strength buy spending money (cf. Section 2.7) on exten-
sion packs. The possible values for the parameter are: battery (in-
creases maximum energy and current energy by 1), sensor (increases
visibility range by 1), shield (increases maximum health and current
health 1) or sabotageDevice (increases the strength by 1). Of course,
it fails if your agent is not allowed (determined by the role) to wear a
sabotageDevice. Also, it fails when being attacked or if the current
energy is too low. Finally, if the parameter is syntactically wrong the
result is wrongParameter and otherwise it is successful.

repair This action (costs: 2) repairs a teammate. Note that an agent cannot
repair itself. The parameter determines which agent gets repaired. If
the value is syntactically wrong the result is wrongParameter. If there
is no such agent it is failed. It also fails because of too low energy.
Otherwise it is successful.

In general, an action can fail with a certain probability (1 percent). In this
case the action is considered as the skip action (and the perceived result will
be failed). Actions that are performed by an agent but do not correspond
to the agent’s role fail as well.

9 Technical Report IfI-12-01

Scenario Description

2.6 Disabled Agents

Agents whose health drops to zero, are disabled, i.e., only the action goto,
repair, skip are executable (if the role allows that). The recharge action
is also allowed to be performed, but its recharge rate is set to 10 percent.

2.7 Money

If a team reaches a milestone, its money is increased. We have different
achievements, for example:

• having zones with fixed values, e.g. 10 or 20,

• fixed numbers of probed vertices, e.g. 5 or 10,

• fixed numbers of surveyed edges, e.g. 10 or 20,

• fixed numbers of inspected vehicles, e.g. 5 or 10,

• fixed numbers of successful attacks, e.g. 5 or 10, or

• fixed numbers of successful parries, e.g. 5 or 10.

Note that the exact achievements are defined in the configuration. The
exact details about achievements are still object to change, in the upcoming
phase of balancing. We are going to announce them later.

2.8 Percepts

In every step, the agents get these percepts:

• state of the simulation, i.e. the current step,

• state of the team, i.e. the current scores and money,

• state of the vehicle, i.e. its internals as described above,

• visible vertices, i.e. identifier and team,

• visible edges, i.e. its vertices’ identifiers,

• visible vehicles, i.e. its identifier, vertex, team,

• probed vertices, i.e. its identifier and its value,

• surveyed edges, i.e. its vertices’ identifiers and weight, and

• inspected vehicles, i.e. its identifier, vertex, team and internals.

Please refer to the protocol description for the details about percepts.
We also have the notion of shared percepts. Agents of the same team that

are in the same zone share their percepts, that is visible vertices, edges and
vehicles, and probed vertices, surveyed edges and inspected vehicles.

DEPARTMENTOF INFORMATICS 10

MAPC 2011 DOCUMENTATION

2.9 Simulation state transition

The simulation state transition is as follows:

1. collect all actions from the agents,

2. let each action fail with a specific probability,

3. execute all remaining attack and parry actions,

4. determine disabled agents,

5. execute all remaining actions,

6. prepare percepts,

7. deliver the percepts.

3 Agent-Server Communication

The agents from each participating team will be executed locally (on the par-
ticipant’s hardware) while the simulated environment, in which all agents
from competing teams perform actions, runs on the remote contest simula-
tion server.

Agents communicate with the contest server using standard TCP/IP stack
with socket session interface. The Internet coordinates (IP address and port)
of the contest server (and a dedicated test server) will be announced later via
the official contest mailing list.

Agents communicate with the server by exchanging XML messages. Mes-
sages are well-formed XML documents, described later in this document. We
recommend using standard XML parsers available for many programming
languages for generation and processing of these XML messages. Note that
ill-formed messages, that is messages that do not comply to the message-
syntax outlined here, are ignored.

3.1 Communication Protocol Overview

Logically, the tournament consists of a number of matches. A match is a se-
quel of simulations during which several teams of agents compete in several
different settings of the environment. However, from agent’s point of view,
the tournament consists of a number of simulations in different environment set-
tings and against different opponents.

The tournament is divided into three phases:

1. the initial phase,

11 Technical Report IfI-12-01

Agent-Server Communication

Server Agent

AUTH-REQUEST

AUTH-RESPONSE

Figure 3: The initial phase.

2. the simulation phase, and

3. the final phase.

During the initial phase, agents connect to the simulation server and iden-
tify themselves by providing their username and password (AUTH-REQUEST
message). Credentials for each agent will be distributed in advance via e-
mail. As a response, agents receive the result of their authentication request
(AUTH-RESPONSEmessage) which can either succeed, or fail. After successful
authentication, agents should wait until the first simulation of the tourna-
ment starts.

Fig. 3 shows a picture of the initial phase (UML-like notation).
At the beginning of each simulation, agents of the two participating teams

are notified (SIM-START message) and receive simulation specific informa-
tion.

In each simulation step each agent receives a perception about its envi-
ronment (REQUEST-ACTIONmessage) and should respond by performing an
action (ACTION message).

The agent has to deliver its response within the given deadline. The ac-
tion message has to contain the identifier of the action, the agent wants to
perform, and action parameters, if required.

Fig. 4 shows a picture of the simulation phase.
When the simulation is finished, participating agents receive a notifica-

tion about its end (SIM-END message) which includes the outcome of the
simulation.

All agents which currently do not participate in a simulation should wait
until the simulation server notifies them about either 1) the start of a simu-
lation, they are going to participate in, or 2) the end of the tournament.

At the end of the tournament, all agents receive a notification (BYE mes-
sage). Subsequently the simulation server will terminate the connections to
the agents.

Fig. 5 shows a picture of the final phase.

DEPARTMENTOF INFORMATICS 12

MAPC 2011 DOCUMENTATION

Server Agent

SIM-START

REQUEST-ACTION

ACTION

SIM-END

loop: Simulation Step Cycle

Figure 4: The simulation-phase.

Server Agent

BYE

Figure 5: The final phase.

13 Technical Report IfI-12-01

Agent-Server Communication

Server Agent

AUTH-REQUEST

AUTH-RESPONSE

SIM-START

Figure 6: Reconnecting.

3.1.1 Reconnection

When an agent loses connection to the simulation server, the tournament
proceeds without disruption, only all the actions of the disconnected agent
are considered to be empty (skip). Agents themselves are responsible for
maintaining the connection to the simulation server and in a case of con-
nection disruption, they are allowed to reconnect.

Agents reconnect by performing the same sequence of steps as at the be-
ginning of the tournament. After establishing the connection to the sim-
ulation server, an agent sends an AUTH-REQUEST message and receives an
AUTH-RESPONSE. After successful authentication, the server sends the agent
the SIM-START message. If the agent participates in a currently running
simulation, the SIM-START message will be delivered immediately after the
AUTH-RESPONSE. Otherwise the agent will wait until the start of the next
simulation in which it participates. In the subsequent step when the agent is
picked to perform an action, it receives the standard REQUEST-ACTION mes-
sage containing the perception of the agent at the current simulation step,
and the simulation proceeds in a normal mode.

Fig. 6 shows a picture of the reconnection.

3.1.2 XML Messages Description

XML message structure The XML messages exchanged between server and
agents are zero terminated UTF-8 strings. Each XML message exchanged be-
tween the simulation server and agent consists of three parts:

• Standard XML header: Contains the standard XML document header

<?xml version="1.0" encoding="UTF-8"?>

DEPARTMENTOF INFORMATICS 14

MAPC 2011 DOCUMENTATION

• Message envelope: All XML messages have <message> as the root ele-
ment. Its attributes are the timestamp and a message type identifier.

• Message separator: Note that because each message is a UTF-8-zero-
terminated string, messages are separated by nullbyte.

The timestamp is a numeric string containing the status of the simula-
tion server’s global timer at the time of message creation. The unit of the
global timer is milliseconds and it is the result of standard system call "time"
on the simulation server (measuring number of milliseconds from January
1st, 1970 UTC). The message type identifier is one of the following values:
auth-request, auth-response, sim-start, sim-end, bye,
request-action, action.

Messages sent from the server to an agent contain all attributes of the root
element. However, the timestamp attribute can be omitted in messages sent
from an agent to the server. In the case it is included, server silently ignores
it.

Example of a server-2-agent message:

<message timestamp="10001980000000" type="request-action">
<!-- optional data -->

</message>

Example of an agent-2-server message:

<message type="auth-request">
<!-- optional data -->

</message>

Depending on the message type, the root element <message> can con-
tain simulation specific data.

AUTH-REQUEST (agent-2-server) When an agent connects to the server, it
has to authenticate itself using the username and password provided in ad-
vance by the contest organizers. This way we prevent the unauthorized use
of connections belonging to a contest participant. AUTH-REQUEST is the
very first message an agent sends to the contest server.

The message envelope contains one element <authentication> with-
out subelements. It has two attributes username and password.

Example:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<message type="auth-request">

<authentication password="1" username="a1"/>
</message>

15 Technical Report IfI-12-01

Agent-Server Communication

AUTH-RESPONSE (server-2-agent) Upon receiving anAUTH-REQUESTmes-
sage, the server verifies the provided credentials and responds by a message
AUTH-RESPONSE indicating success, or failure of authentication. It has one
attribute timestamp that represents the time when the message was sent.

The envelope contains one <authentication> element without subele-
ments. It has one attribute result of type string and its value can be either
"ok", or "fail". Example:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<message timestamp="1297263037617" type="auth-response">

<authentication result="ok"/>
</message>

SIM-START (server-2-agent) The simulation starts by notifying the corre-
sponding agents about the details of the starting simulation. This notifica-
tion is done by sending the SIM-START message.

The data about the starting simulation is contained in one<simulation>
element with the following attributes:

• the number of edges,

• the number of vertices,

• the id of the simulation, and

• the number of steps the simulation will last.

One step involves all agents acting at once. Therefore if a simulation has
n steps, it means that each agent will receive n REQUEST-ACTION messages
during the simulation (assuming a stable connection to the server).

Example:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<message timestamp="1297263004607" type="sim-start">

<simulation edges="47" id="0" steps="500" vertices="20"/>
</message>

SIM-END (server-2-agent) Each simulation lasts a certain number of steps.
At the end of each simulation the server notifies agents about its end and its
result.

The <sim-result>-tag has two attributes. ranking is the ranking of the
team and score is the final score.

Example:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<message timestamp="1297269179279" type="sim-end">

<sim-result ranking="2" score="9"/>
</message>

DEPARTMENTOF INFORMATICS 16

MAPC 2011 DOCUMENTATION

BYE (server-2-agent) At the end of the tournament the server notifies each
agent that the last simulation has finished and subsequently terminates the
connections. There is no data within the message envelope of this message.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<message timestamp="1204978760555" type="bye"/>

REQUEST-ACTION (server-2-agent) In each simulation step the server asks
the agents to perform an action and sends them the corresponding percep-
tions.

This message, due to its complexity, is best explained using an example.
Note, however, that the following message is an artificial one, which has
never been sent by the server:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<message timestamp="1297263230578" type="request-action">

<perception deadline="1297263232578" id="201">
<simulation step="200"/>
<self energy="19" health="9" lastAction="skip"
lastActionResult="successful" maxEnergy="19"
maxEnergyDisabled="9" maxHealth="9" position="vertex4"
strength="5" visRange="5" zoneScore="27"/>
<team lastStepScore="27" money="1" score="4270"
zonesScore="26">
<achievements>

<achievement name="area20"/>
...

</achievements>
</team>
<visibleVertices>
<visibleVertex name="vertex19" team="none"/>
...

</visibleVertices>
<visibleEdges>
<visibleEdge node1="vertex0" node2="vertex11"/>
...

</visibleEdges>
<visibleEntities>
<visibleEntity name="b5" team="B" node="vertex0"

status="normal"/>
...

</visibleEntities>
<probedVertices>
<probedVertex name="vertex18" value="4"/>

</probedVertices>
<surveyedEdges>
<surveyedEdge node1="vertex3" node2="vertex7" weight="2"/>
...

</surveyedEdges>
<inspectedEntities>

17 Technical Report IfI-12-01

Agent-Server Communication

<inspectedEntity energy="8" health="9" maxEnergy="8"
maxHealth="9" name="b5" node="vertex10" role="role2"
strength="6" team="B" visRange="2"/>
...

</inspectedEntities>
</perception>

</message>

Now, it is not necessary to elaborate on the nesting of the tags, which is
obvious from the example. We will only focus on the relevant tags.

• <perception> has two attributes

– deadline denotes the latest moment in time when the server will
accept an action, and

– id represents the action-id, that is the id, that is supposed to be
added to the action-message.

• <simulation> has a step-attribute, that denotes the current step of
the simulation.

• <self> represents the state of the vehicle, with the attributes

– energy, which is the current energy,

– health, which is the current health,

– lastAction, which is the last action that has been performed,

– lastActionResult, which is the outcome of the last action,

– maxEnergy, which is the maximum energy,

– maxEnergyDisabled, which is the maximum energy, when the
vehicle is disabled,

– maxHealth, which is the maximum health,

– position, which is the vehicle’s current position,

– strength, which is the strength,

– visRange, which is the visibility range, and

– zoneScore, which is the value of the zone that the vehicle is part
of.

• team represents the state of the vehicles team, with the attributes

– lastStepScore, which is the score of the team in the last step,

– money, which is the current amount of money the team has,

– score, which is the overall score of the team, and

DEPARTMENTOF INFORMATICS 18

MAPC 2011 DOCUMENTATION

– zonesScore, which is the sum of the values of all zones occupied
by the team.

Note, at this point, that lastStepScore is the addition of money and
zonesScore from the last step. Note also that score is the sum of all
lastStepScores

• <achievement> is an achievement, whose name is indicated by the
name-attribute.

• <visibleVertex> represents a visible vertex, whose name is indicated
by the name-attribute, which denotes its identifier, and by the team-
attribute, representing the team occupying the vertex.

• <visibleEdge> denotes a visible edge, its vertices are represented by
the attributes node1 and node2.

• <visibleEntity> represents a visible entity, denoted by the name-
attribute. The status of the agent can be either normal or disabled.

• <probedVertex> is a probed vertex, the name-attribute is the vertex’s
name and the value is the vertex’s value.

• <surveyedEdge> is a surveyed edge, node1 and node2 denote the ad-
jacent vertices, and weight represents the weight.

• <inspectedEntity> represents an inspected vehicle, the attributes
are

– energy, which is the current energy of the vehicle,

– health, which is the current health of the vehicle,

– maxEnergy, which is the maximum energy of the vehicle,

– maxHealth, which is the maximum health,

– name, which is the vehicle’s name

– node, which is the name of the vertex the vehicle is standing on,

– role, which is the vehicles role,

– strength, which is the vehicle’s strength,

– team, which is the vehicle’s team, and

– visRange, which is the vehicle’s visibility range.

19 Technical Report IfI-12-01

Agent-Server Communication

ACTION (agent-2-server) The agent should respond the REQUEST-ACTION
message with the action it chooses to perform.

The envelope of the ACTION message contains one element <action>
with the attributes type and id. The attribute type indicates an action the
agent wants to perform. It contains a string value which can be one of the
following strings:

• "goto" with an obligatory attribute param, moves the entity to an-
other vertex, whereas the attribute denotes the vertex,

• "attack" with an obligatory attribute param, attacks another entity,
whereas the attribute denotes the entity-to-be-attacked,

• "parry" parries any attack,

• "probe" probes the current vertex,

• "survey" surveys some visible edges,

• "inspect" inspects some visible entities,

• "repair" with an obligatory attribute param, repairs another entity,
whereas the attribute denotes the entity-to-be-repaired,

• "buy" with an obligatory attribute param, buys an item, whereas the
attribute denotes the item-to-be-bought,

• "recharge" recharges, and

• "skip" does nothing.

Note, however, that the scenario description contains the precise seman-
tics of the actions.

Here is an example of a goto-action:

<?xml version="1.0" encoding="UTF-8"?>
<message type="action">

<action type="goto" param="vertex1">
</message>

Here is an example of a attack-action:

<?xml version="1.0" encoding="UTF-8"?>
<message type="action">

<action type="attack" param="a2"/>
</message>

Here is an example of a probe-action:

DEPARTMENTOF INFORMATICS 20

MAPC 2011 DOCUMENTATION

<?xml version="1.0" encoding="UTF-8"?>
<message type="action">

<action type="probe"/>
</message>

Here is an example of a survey-action:

<?xml version="1.0" encoding="UTF-8"?>
<message type="action">

<action type="survey"/>
</message>

Here is an example of a inspect-action:

<?xml version="1.0" encoding="UTF-8"?>
<message type="action">

<action type="inspect"/>
</message>

Here is an example of a parry-action:

<?xml version="1.0" encoding="UTF-8"?>
<message type="action">

<action type="parry"/>
</message>

Here is an example of a recharge-action:

<?xml version="1.0" encoding="UTF-8"?>
<message type="action">

<action type="recharge"/>
</message>

Here is an example of a repair-action:

<?xml version="1.0" encoding="UTF-8"?>
<message type="action">

<action type="repair" param="b2"/>
</message>

Here is an example of a buy-action:

<?xml version="1.0" encoding="UTF-8"?>
<message type="action">

<action type="buy" param="battery"/>
</message>

21 Technical Report IfI-12-01

Simulation Server

The attribute id is a string which should contain the REQUEST-ACTION
message identifier. The agents must plainly copy the value of id attribute in
REQUEST-ACTIONmessage to theid attribute ofACTIONmessage, otherwise
the action message will be discarded.

Note that the corresponding ACTION message has to be delivered to the
time indicated by the value of attribute deadline of the REQUEST-ACTION
message. Agents should therefore send the ACTION message in advance be-
fore the indicated deadline is reached so that the server will receive it in time.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<message type="action">

<action id="70" type="skip"/>
</message>

4 Simulation Server

This chapter describes how to use the scenario simulator provided by the
contest organization (available athttp://www.multiagentcontest.org/
2011). Although some pre-defined configurations for the scenario are pro-
vided, participants can create new scenarios to evaluate specific strategies for
their teams. All these aspects are covered in the next sections.

4.1 StartingMASSim

You can start theMASSim server by invoking this:

$./startServer.sh

You will then be prompted to choose a simulation.
In parallel you can also start the monitor which will allow you to observe

the current simulation. The monitor can be invoked like this:

$./startMarsMonitor.sh

Note, however, this monitor provides you with complete information. The
agents taking part on the simulation, on the other hand, only have access to
a subset of this information.

The monitor also stores the match on hard disk. You can view these files
by invoking:

$./startMarsFileViewer.sh /path/where/the/files/are

For Microsoft Windows we suggest that you install Cygwin2 in order to
run theMASSim-software taking advantage of the shell scripts.

2http://www.cygwin.com/

DEPARTMENTOF INFORMATICS 22

http://www.multiagentcontest.org/2011
http://www.multiagentcontest.org/2011

MAPC 2011 DOCUMENTATION

<?xml version="1.0" encoding="UTF-8"?>
<conf backuppath="backup"

launch-sync-type="key"
reportpath="./backup/"
time-to-launch="10000"
tournamentmode="0"
tournamentname="Mars2011">

<simulation-server>
<network-agent backlog="10" port="12300"/>

</simulation-server>
<match>

<simulation ...>
...

</simulation>
...
<simulation ...>

...
</simulation>

</match>
...
<match>

...
</match>
<accounts>

...
</accounts>

</conf>

Figure 7: General structure of theMASSim configuration-file.

4.2 ConfiguringMASSim

When startingMASSim, you must provide a configuration file to the server.
Configuration files are XML-based, and a set of configuration files is already
available in the scripts/conf sub-folder of your MASSim installation. A
detailed explanation of the configuration file is given next.

4.2.1 General Configuration

The general structure of the configuration file is depicted in Fig. 7.
The attributes of the conf tag are the following:

• backuppath - The path where important information of each simula-
tion step is stored.

23 Technical Report IfI-12-01

Simulation Server

• launch-sync-type - Determines whether the server is started by press-
ing ENTER or after a certain time defined in time-to-launch. The
value can be key or timer.

• reportpath - The path where the overall tournament results are stored.

• time-to-launch - The time for the option timer.

• tournamentmode - Defines the structure of the tournament. 0 sets it
to a round robin tournament. 1 is used when only one team should
play against all others.

• tournamentname - Sets the tournament name to this value.

Thesimulation-server tag has one child with two attributes. backlog
defines the time intervals (in milliseconds) for printing the debug messages
to stdout or stderr respectively. The attribute port sets the port of the
server.

A configuration can have one or more match tags, that will be instantiated
depending on the tournamentmode attribute.

4.2.2 Simulation Configuration

The simulation tag is used to specify the scenario to be run, along with all
the parameters that affect the simulation.

The attributes available for the simulation tag are the following:

• id - An identifier for the simulation.3

• simulationclass - The name of the main Java class implementing
the scenario. For the 2011 Mars Scenario, the class that must be used
here is massim.competition2011.GraphSimulation.

• configurationclass - The name of the Java class that will hold the
configuration data specified in the configuration child tag. For 2011
Mars Scenario, the class to use is
massim.competition2011.GraphSimulationConfiguration.

• file-simulationlog - The path where simulation logs are stored.

• rmixmlobsserverhost - The host to use to connect the scenario mon-
itor.

• rmixmlobsserverport - The port to use to connect the scenario mon-
itor.

3To distinguish among different instances of the simulation executed during a tournament,
this identifier will be appended to the names of the teams taking part in that instance.

DEPARTMENTOF INFORMATICS 24

MAPC 2011 DOCUMENTATION

• rmixmlobserver - The name of the Java class that will translate the
current scenario state into XML data, and send it via RMI to the sce-
nario monitor when connected. For the 2011 Mars Scenario, the class
to use is
massim.competition2011.
GraphSimulationRMIXMLDocumentObserver.

A skeleton XML for the simulation tag is shown in Fig. 8. It has two chil-
dren: configuration and agents. The configuration part is scenario-
specific, and must be in correspondence with the configurationclass
specified in the simulation attributes. For the 2011 Mars scenario, the at-
tributes of the configuration tag are the following:

• maxNumberOfSteps - The number of steps that the simulation must
run until determining a winner.

• numberOfAgents - The total number of agents that take part in the
simulation run.

• numberOfTeams - The number of teams that take part in the simula-
tion run.

• agentsPerTeam - The number of agents composing each team in the
simulation run.

• numberOfNodes - The size of the randomly generated map, in terms of
number of nodes (vertices).

• gridWidth, gridHeight - Affect the map-generation algorithm. In-
ternally, nodes are created as being situated on a grid, and then edges
are calculated according to this grid. gridWidth ∗ gridHeight must
be greater than numberOfNodes.

• cellWidth - This parameter is not used from MASSim itself, but is
given to the monitor to facilitate the visualization. It stands for the
distance (measured in pts) between two adjacent points in the grid.

• minNodeWeight,maxNodeWeight - The minimum and maximum pos-
sible value for the weights of the nodes (randomly assigned).

• minEdgeCost, maxEdgeCost - The minimum and maximum possible
value for the costs of the edges (randomly assigned).

25 Technical Report IfI-12-01

Simulation Server

<simulation ...>
<configuration ...>

<actions>
<action .../>
<action .../>
...

</actions>
<roles>

<role ...>
<actions>

<action .../>
<action .../>
...

</actions>
<actionsDisable>

<action .../>
<action .../>
...

</actionsDisable>
</role>

</roles>
<achievements>

<achievement .../>
</achievements>

</configuration>
<agents>

<agent ...>
<configuration .../>

</agent>
<agent ...>

<configuration .../>
</agent>
...

</agents>
</simulation>

Figure 8: Simulation XML structure

DEPARTMENTOF INFORMATICS 26

MAPC 2011 DOCUMENTATION

Actions The actions section is used to specify the costs that actions may
imply for the agents attempting to execute them. There must be one action
tag for each action. Thus, the name attribute must be one of the follow-
ing: recharge, goto, attack, parry, probe, survey, inspect, repair
or buy.

In the general case, the rest of the attributes to be specified here represent
the costs of attempting to execute that action in different situations. An ac-
tion can cost energy, health, and achievement points (money). The
costs can vary depending on the success or failure of the action, and also on
whether the agent is in a normal or disabled4 state, so attributes for all the
combinations can be specified.5 The names of these attributes are:

• energyCost

• healthCost

• pointsCost

• energyCostFailed

• ...

• energyCostDisabled

• ...

• energyCostFailedDisabled

Two special cases are the actions recharge and goto. For the recharge
action, the values represent the percentage of the maximum energy and
health that gets recovered. “Failure” in this particular case means that the
agent has been attacked, and thus the health and energy recovering rates can
be specified to be different.

The energy cost of a successful goto action is actually determined by the
cost of the traversed edge. Therefore, in this particular case the energyCost
and energyCostDisabled specified here are considered as factors, that are
multiplied by the edge cost. The cost for the Failed cases, on the other
hand, are constants, as with the rest of the actions.

A thing to note here is that some costs can be specified to be negative val-
ues, e.g. if an agent should recover some energy when it was not able to per-
form a particular action.

4An agent is considered to be in disabled state when its current health is 0
5Not all combinations make sense, and some of them may be just ignored by the server. Nev-

ertheless, they are provided for notation consistency

27 Technical Report IfI-12-01

Simulation Server

Roles The roles section defines the different roles that agents participat-
ing in the simulation will assume. A role encompasses all the internal char-
acteristics of the agent and the set of actions that the agent is allowed to
perform, both when in normal state and when disabled. The following at-
tributes should be specified for each role:

• name - The name by which this role is referenced.

• maxEnergy - The initial upper limit for the energy of the agent.

• maxBuyEnergy - The upper limit for maxEnergy that can be reached
when attempting to perform the buy action with param="battery".

• rateBuyEnergy - The amount by whichmaxEnergy is increased when
successfully performing the buy action with param="battery".

• maxEnergyDisabled - The initial upper limit for the energy of the
agent when disabled.

• rateBuyEnergyDisabled - The amount by which
maxEnergyDisabled is increased when successfully performing the
buy action with param="battery".

• maxHealth - The initial upper limit for the health of the agent.

• maxBuyHealth - The upper limit for maxHealth that can be reached
when attempting to perform the buy action with param="shield".

• rateBuyHealth - The amount by whichmaxHealth is increased when
successfully performing the buy action with param="shield".

• strength - The initial strength of the agent.

• maxBuyStrength - The upper limit for strength that can be reached
when attempting to perform the buy action with
param="sabotageDevice".

• rateBuyStrength - The amount by whichstrength is increased when
successfully performing the buy action with
param="sabotageDevice".

• visRange - The initial visibility range of the agent.

• maxBuyVisRange - The upper limit for visRange that can be reached
when attempting to perform the buy action with param="sensor".

• rateBuyVisRange - The amount by whichvisRange is increased when
successfully performing the buy action (with param="sensor").

DEPARTMENTOF INFORMATICS 28

MAPC 2011 DOCUMENTATION

The actions and actionsDisable sections of the role definition expect
a list of action tags with only one attribute: the name of an action. The
actions listed in these sections are the only actions that will be enabled for
agents having this role when in normal or disabled state respectively.

Achievements The achievements that can yieldachievement points for
the teams are defined here. Each achievement has four attributes: a (prefer-
ably unique) name, a class stating the type of achievement, a quantity
needed to reach the achievement, and the amount ofachievement points
that the achievement yields. Six different classes of achievements are imple-
mented:

• probedVertices - Thequantitymeans the number of different nodes
that a team needs to probe.

• surveyedEdges - The quantitymeans the number of different edges
that a team needs to survey.

• inspectedAgents - Thequantitymeans the number of different op-
ponent agents that a team needs to inspect.

• successfulAttacks - Thequantitymeans the number of successful
attacks that a team needs to perform.

• successfulParries - Thequantitymeans the number of successful
parries that a team needs to perform (only counted when the parrying
agent is actually attacked by an opponent).

• areaValue - The quantity means the score of a zone that a team
needs to build.

Agents The agents section of the simulation configuration is where it is
defined how server-side teams are to be composed during the simulation.
Agents defined here will be matched with agents defined in the accounts
section to be controlled externally by the participants. This matching of
agents varies in function of the tournamentmode parameter explained in
4.2.1.

The attributes for the agent tag are:

• team - The server-side name of the team.

• agentclass - The name of main Java class implementing the agents.
For the 2011 Mars scenario, the class to use is
massim.competition2011.GraphSimulationAgent.

29 Technical Report IfI-12-01

Agent Development

• agentcreationclass - The name of the Java class that will hold the
configuration parsed from the configuration child tag. For the 2011
Mars scenario, the class to use is
massim.competition2011.GraphSimulationAgentParameter.

The configuration child tag for the 2011 Mars scenario only has one at-
tribute: roleName, which refers to the name of one of the previously defined
roles.

4.2.3 Accounts Configuration

In the accounts section of the configuration file, one can configure the
developers’ team that will participate in the tournament, and with which
credentials each developer-side agent will connect toMASSim to control its
server-side counterpart.

The actionclassmap has one attribute name and defines all available ac-
tion classes for the agent accounts. Eachactionclasshas aclass attribute
and an id. An account is structured as follows:

• actionclassmap - Refers to the actionclassmap name that is used for
this account.

• auxtimeout - Additional timeout for messages. The purpose of this
parameter is to give the agents some additional time to allow the server
to process the message.

• defaultactionclass - Sets the default action class.

• maxpacketlength - Defines the maximal length of on message.

• password - The password for the agent.

• team - The team name for the agent.

• timeout - The timeout for messages.

• username - The user name of the agent.

5 Agent Development

Although participants can develop their own interface with the server, im-
plementing the client-side of the protocol described in chapter 3, a high level
interface is provided by the organisation of the contest. It hides all the details
of the protocol and gives to the user a suitable API. This interface is based on
the EISMASSimwhich allows agents coded in several languages (2APL, GOAL,

DEPARTMENTOF INFORMATICS 30

MAPC 2011 DOCUMENTATION

Jason, Java, ...) to straightforwardly integrate their agents with the simula-
tion server.
EISMASSim is based on EIS6, which is a proposed standard for agent-en-

vironment interaction. It maps the communication between theMASSim-
server and agents (sending and receiving XML-messages) to Java-method-
calls and call-backs. On top of that it automatically establishes and main-
tains connections to a specifiedMASSim-server. Additionally it is intended
to also gather statistics about the execution of your agents. EISMASSim and
EIS both come as a jar-files which are included in the software-package.

5.1 Using EISMASSim

In order to use EISMASSimwith your project, you have to perform a couple of
steps, which we will outline here.

1. Setting up the class-path: The first thing you have to do is to add EIS
and EISMASSim to the class-path of your project. Please use the jar-files
eis-0.3.jar and eismassim-1.0.jar. The first jar contains the generic
environment-interface, the second one contains the specialized one.

2. Creating an instance of the environment interface: It is not intended
to instantiate EIS-compliant environment-interfaces directly, that is calling
the constructor of the respective class. Instead it is advised to use the class-
loader eis.EILoader. Here is an example for instantiating the environment-
interface-class via this very class-loader7:

EnvironmentInterfaceStandard ei = null;
try {

String cn = "massim.eismassim.EnvironmentInterface";
ei = EILoader.fromClassName(cn);

} catch (IOException e) {
// TODO handle the exception

}

3. Registering your agents: Now that the environment-interface is instan-
tiated you need to register your agents to it. That is, that you are required to
register every single agent that is supposed to interact with the environment
via the environment-interface using its name or any unique identifier. For
each of your agents please do this:

6Available at http://sf.net/projects/apleis/.
7There is also a method called fromJarFile, which firstly add a jar-file to the class-path,

secondly looks up the main-class attribute from the jar’s manifest-entry, and thirdly instantiates
the environment-interface. This works for EISMASSim as well.

31 Technical Report IfI-12-01

http://sf.net/projects/apleis/

Agent Development

try {
ei.registerAgent(agentName);

} catch (AgentException e1) {
// TODO handle the exception

}

4. Associating your agents with the vehicles: At this moment you have to
associate your agents with the available entities. An entity is a connection to
a vehicle, which is part of a simulation executed by theMASSim-server. You
can associate one of your agents with an entity (vehicle) by using the entity’s
name. The names of the entities however are specified in the configuration
XML-file (see below). As soon as you associate an agent with an entity, a
connection to theMASSim-server is established. Here is an example how to
associate an agent with an entity:

try {
ei.associateEntity(agentName,entityName);

} catch (RelationException e) {
// TODO handle the exception

}

DEPARTMENTOF INFORMATICS 32

MAPC 2011 DOCUMENTATION

5. Starting the execution: The next step is to start the overall execution.
This is how it is done:

try {
ei.start();

} catch (ManagementException e) {
// TODO handle the exception

}

6. Perceiving the environment: Perceiving is facilitated either by 1. get-
ting all percepts, that is calling the getAllPercepts-method or 2. by han-
dling percepts-as-notifications, that is every time there is a new percept a lis-
tener’s method is called in order to trigger a reaction to the percept. Note
that this is EIS’s usual policy about perceiving. Here is an example for retriev-
ing all percepts8:

try {
Collection<Percept> ret = getAllPercepts(getName());
// TODO interpret the percepts

} catch (PerceiveException e) {
// TODO handle the exception

} catch (NoEnvironmentException e) {
// TODO handle the exception

}

7. Acting: Executing an action means invoking the performAction-me-
thod and passing 1. the name of the agent, that intends to execute an action,
and 2. an action-object that represents the action-to-be-executed. This is an
exemplary execution of an action:

Action = new Action(...);
try {

ei.performAction(agentName, action);
} catch (ActException e) {

// handle the exception
}

5.2 Configuring EISMASSim

The EISMASSim environment-interface can be configured using the configu-
ration-file eismassimconfig.xml which is automatically loaded and eval-
uated when the environment-interface is instantiated. Fig. 9 shows an ex-
emplary configuration-file for EISMASSim.

The attributes of the <interfaceConfig>-tag are:
8For an introduction on how to use percepts-as-notifications, see the manual that accompa-

nies the EIS software package.

33 Technical Report IfI-12-01

Agent Development

<?xml version="1.0" encoding="UTF-8"?>
<interfaceConfig scenario="mars2011" host="localhost" port="12300"
scheduling="yes" times="no" notifications="no">
<entities>
<entity name="vehicle1" username="a1" password="1" xml="yes"/>
<entity name="vehicle2" username="a2" password="1" xml="yes"/>
<entity name="vehicle3" username="a3" password="1" xml="yes"/>
<entity name="vehicle4" username="a4" password="1" xml="yes"/>
<entity name="vehicle5" username="a5" password="1" xml="yes"/>
<entity name="vehicle6" username="a6" password="1" xml="yes"/>
<entity name="vehicle7" username="a7" password="1" xml="yes"/>
<entity name="vehicle8" username="a8" password="1" xml="yes"/>
<entity name="vehicle9" username="a9" password="1" xml="yes"/>

</entities>
</interfaceConfig>

Figure 9: An exemplary EISMASSim-configuration-file.

• scenario specifies the Contest-scenario that is supposed to be han-
dled. For the time being the only value that is accepted is "mars2011".

• host specifies the URL of theMASSim-server that runs the simulations.
This can be for example localhost, a valid IP-address, or the fully-
qualified hostname of one of our Contest-servers.

• port specifies the port-number of theMASSim-server.

• scheduling enables/disables scheduling. Enabled scheduling means
that an action-message is not sent unless there is a valid action-id (see
the protocol-description for details on the action-ids). This mechanism
makes sure that a single action-id is used only once. Note that an at-
tempt to send an action-message times out after 5 seconds. The default
value is yes for scheduling enabled. Warning: note, however, that dis-
abling scheduling in the interface leaves you with the responsibility of
scheduling, that is to ensure that the server is not strained with more
than one action per connection and simulation-step.

• times enables/disables time-annotations. If enabled this will annotate
each percept with a time-stamp, that indicates when the percept has
been generated by the server (see the protocol-description for details
on time-stamps).

• notifications denotes whether percepts are to be provided as noti-
fications. The default-value is no.

Each <entity>-tag specifies a single connection to the MASSim-server.
The attributes are:

• name specifies the name of the connection. This is a requirement for
acting and perceiving, and needs to be unique.

DEPARTMENTOF INFORMATICS 34

MAPC 2011 DOCUMENTATION

• username and password specify the credentials that are required by
MASSim ’s authentication-mechanism (provided either by the organiz-
ers, or specified in your very own server-configuration-file).

• xml enables/disables printing incoming/outgoing XML-messages to the
console. This is useful for debugging-purposes.

5.3 Actions and Percepts for the Mars-Scenario

In the following, we will elaborate on actions and percepts. Each action and
each percept consists of a name followed by an optional list of parameters.
A parameter is either an identifier (<Identifier>), that is a String, or a nu-
meral(<Numeral>).

Here is the list of actions that can be performed in the course of each simu-
lation (see the scenario-description for the precise semantics of the actions):

• attack(<Identifier>) attacks a vehicle.

• buy(<Identifier>) buys an item.

• goto(<Identifier>) moves to a vertex.

• inspect inspects some visible vehicles.

• parry parries all attacks.

• probe probes the current vertex.

• recharge recharges the vehicle.

• repair(<Identifier>) repairs a vehicle.

• skip does nothing.

• survey surveys some visible edges.

Creating an action-object that is to be passed as a parameter to the method
performAction is very straightforward:

Action attack = new Action("attack", new Identifier("a2"));

In the following we will consider a list of percepts that can be available
during a tournament. Note that during a simulation, data from the respec-
tive sim-start-message will be available as well as data from the current
request-action-message (see the protocol description for details about the
messages):

• achievement(<Identifier>) denotes an achievement.

35 Technical Report IfI-12-01

Agent Development

• bye indicates that the tournament is over.

• deadline(<Numeral>) indicates the deadline for sending a valid ac-
tion-message to the server in Unix-time.

• edges(<Numeral>) represents the number of edges of the current sim-
ulation.

• energy(<Numeral>) denotes the current amount of energy of the ve-
hicle.

• health(<Numeral>) indicates the current health of the vehicle.

• id(<Identifier>) indicates the identifier of the current simulation.

• lastAction(<Identifier>) indicates the last action that was sent
to the server.

• lastActionResult(<Identifier>) indicates the outcome of the last
action.

• lastStepScore(<Numeral>) indicates the score of the vehicle’s team
in the last step of the current simulation.

• maxEnergy(<Numeral>)denotes the maximum amount of energy the
vehicle can have.

• maxEnergyDisabled(<Numeral>)denotes the maximum amount of
energy the vehicle can have, when it is disabled.

• maxHealth(<Numeral>) represents the maximum health the vehicle
can have.

• money(<Numeral>) denotes the amount of money available to the ve-
hicle’s team.

• position(<Identifier>) indicates the current position of the ve-
hicle. The identifier is the vertex’s name.

• probedVertex(<Identifier>,<Numeral>) denotes the value of a
probed vertex. The identifier is the vertex’s name and the numeral is
its value.

• ranking(<Numeral>) indicates the outcome of the simulation for the
vehicle’s team, that is its ranking.

• requestAction indicates that the server has requested the vehicle to
perform an action.

• score(<Numeral>) represents is the overall score of the vehicle’s team.

DEPARTMENTOF INFORMATICS 36

MAPC 2011 DOCUMENTATION

• simEnd indicates that the server has notified the vehicle about the end
of a simulation.

• simStart indicates that the server has notified the vehicle about the
start of a simulation.

• step(<Numeral>) represents the current step of the current simula-
tion.

• steps(<Numeral>) represents the overall number of steps of the cur-
rent simulation.

• strength(<Numeral>) represents the current strength of the vehicle.

• surveyedEdge(<Identifier>,<Identifier>,<Numeral>)
indicates the weight of a surveyed edge. The identifiers represent the
adjacent vertices and the numeral denotes the weight of the edge.

• timestamp(<Numeral>) represents the moment in time, when the
last message was sent by the server, again in Unix-time.

• vertices(<Numeral>) represents the number of vertices of the cur-
rent simulation.

• visRange(<Numeral>) denotes the current visibility-range of the ve-
hicle.

• visibleEdge(<Identifier>,<Identifier>) represents a visible
edge, denoted by its two adjacent vertices.

• visibleEntity(<Identifier>,<Identifier>,<Identifier>,
<Identifier>) denotes a visible vehicle. The first identifier repre-
sents the vehicle’s name, the second one the vertex it is standing on,
the third its team and the fourth and final one indicates whether the
entity is disabled or not.

• visibleVertex(<Identifier>,<Identifier>) denotes a visible
vertex, represented by its name and the team that occupies it.

• zoneScore(<Numeral>) indicates the current score yielded by the
zone the vehicle is part of.

• zonesScore(<Numeral>) indicates the current score of the vehicle’s
team yielded by zones, that is the sum of scores of all zones.

Note, however, that the percepts look a little different, when annotations
(see the section on configuring EISMASSim) are activated.

37 Technical Report IfI-12-01

Agent Development

5.4 Programming Java Agents

Again, we provide a set of very simple agents that function as a proof-of-
concept and as dummy-agents for testing. On top of that we also show how
to use the environment-interface EISMASSim (see the EISMASSim description
for further details).

This document will show you two things: 1. how configure and execute
our dummy agents, and 2. how to create new agents. Note, however, that
we do not encourage you to create your own agent team from scratch using
the agent-infrastructure we are providing. Our agent-infrastructure is rather
limited and we are not optimistic that we will have enough time to add new
features, if the need for such features arises. Nevertheless, if you accept this,
feel free to use the agent-infrastructure.

5.4.1 Running Our Dummy-Agents

In the software package we have included a single agent-configuration (see
below). It sets up two teams A and B. Each team has 10 agents.

In order to run the dummy agents, navigate to the javaagents/scripts
directory and execute

./startAgents.sh

You will then be asked to select a configuration. At the time of the release
you can only select a single configuration. If you add new ones you can se-
lect them as well. After selecting a configuration, the environment-interface
will immediately establish the connections to the MASSim-server, which
must be already up and running, as specified in the environment-interface
configuration-file, and execute the agents.

5.4.2 Changing the Configuration

If you desire another configuration that is different from ours, please per-
form these steps:

1. create a new subfolder at javaagents/scripts/conf, you can define
an arbitrary name, which will be made selectable by the
startAgents.sh shell-script,

2. copy the two XML-files from
javaagents/scripts/conf/dummyteam/ to the directory you have
just created,

3. if necessary adapt the eismassimconfig.xml-file (see the EISMASSim
description for instructions), and

DEPARTMENTOF INFORMATICS 38

MAPC 2011 DOCUMENTATION

<?xml version="1.0" encoding="UTF-8"?>
<javaAgentsConfig>

<agents>
<agent name="A1" entity="cA1" class="massim.javaagents.agents2011.SimpletonBuyerAgent" team="A"/>
<agent name="A2" entity="cA2" class="massim.javaagents.agents2011.RechargingFighterAgent" team="A"/>
<agent name="A3" entity="cA3" class="massim.javaagents.agents2011.RechargingFighterAgent" team="A"/>
<agent name="A4" entity="cA4" class="massim.javaagents.agents2011.RechargingFullExplorerAgent" team="A"/>
<agent name="A5" entity="cA5" class="massim.javaagents.agents2011.RechargingFullExplorerAgent" team="A"/>
<agent name="A6" entity="cA6" class="massim.javaagents.agents2011.RechargingFullExplorerAgent" team="A"/>
<agent name="A7" entity="cA7" class="massim.javaagents.agents2011.RechargingFullExplorerAgent" team="A"/>
<agent name="A8" entity="cA8" class="massim.javaagents.agents2011.RechargingFullExplorerAgent" team="A"/>
<agent name="A9" entity="cA9" class="massim.javaagents.agents2011.RechargingFullExplorerAgent" team="A"/>
<agent name="B1" entity="cB1" class="massim.javaagents.agents2011.SimpletonBuyerAgent" team="B"/>
<agent name="B2" entity="cB2" class="massim.javaagents.agents2011.RechargingFighterAgent" team="B"/>
<agent name="B3" entity="cB3" class="massim.javaagents.agents2011.RechargingFighterAgent" team="B"/>
<agent name="B4" entity="cB4" class="massim.javaagents.agents2011.RechargingFullExplorerAgent" team="B"/>
<agent name="B5" entity="cB5" class="massim.javaagents.agents2011.RechargingFullExplorerAgent" team="B"/>
<agent name="B6" entity="cB6" class="massim.javaagents.agents2011.RechargingFullExplorerAgent" team="B"/>
<agent name="B7" entity="cB7" class="massim.javaagents.agents2011.RechargingFullExplorerAgent" team="B"/>
<agent name="B8" entity="cB8" class="massim.javaagents.agents2011.RechargingFullExplorerAgent" team="B"/>
<agent name="B9" entity="cB9" class="massim.javaagents.agents2011.RechargingFullExplorerAgent" team="B"/>

</agents>
</javaAgentsConfig>

Figure 10: An exemplary agents configuration-file.

4. adapt thejavaagentsconfig.xml-file, according to the following in-
structions.

Figure 10 shows an exemplary agents configuration-file. Here, the<agent>
tag is the most relevant one. Its attributes are:

• name is the agent’s name, which is required for communication and
registering to the environment-interface,

• entity is the name of the connector/vehicle the agent is supposed
to control, as specified in the configuration file of the environment-
interface,

• class is the class-name of the agent, which will be dynamically loaded
via Java-reflection, and

• team is the team-name of the agent, which is required for communica-
tion9.

The class-tag is the most relevant one, because this is the place to plug
in different agents. There are a couple of unmentioned agents in the pack-
age massim.javaagents.agents2011 (see the accompanying javadoc for
their descriptions and the code of their implementations). On top of that
you can also specify your own agents here.

5.4.3 Creating Your Own Agents

In order to create and use your own agents you are required to perform these
steps:

9An agent can only receive messages from and send messages to its team-members.

39 Technical Report IfI-12-01

Agent Development

public class YourAgent extends Agent {

public YourAgent(String name, String team) {
super(name, team);
// TODO do something if necessary

}

@Override
public void handlePercept(Percept p) {

// TODO handle percepts if necessary
}

@Override
public Action step() {

// TODO deliberate and return an action
return null;

}

}

Figure 11: A new agent without any functionality.

1. create a new agent-class that inherits frommassim.javaagents.Agent,

2. implement a constructor and a couple of required methods,

3. incorporate your new agent-class into the javaagentsconfig.xml,

4. make sure that your new agent-class is in the class-path, and

5. execute.

Figure 11 shows a very rudimentary agent without any functionality. It is
not necessary to extend the constructor, unless you have to add some use-
ful things. You have to add code to the handlePercept-method if you in-
tend to handle percepts-as-notifications. Please note two things: 1. handling
percepts-as-notifications is optional, that is there are other means to retrieve
percepts, and 2. you have to explicitly activate percepts-as-notifications in
the environment-interface configuration file (see the EISMASSimdescription)
if you intend to use them. The step-method is automatically called by the
interpreter that executes all agents. It is supposed to return an action, which
will then be executed automatically. Note that if this method returns null,
no message is sent to the server. The step-method is the place where you are
supposed to add your agent’s intelligence.

Finally, we will introduce a couple of methods that might be useful (see
the javadoc of massim.javaagents.Agent for the full overview):

• Collection<LogicBelief> getBeliefBase() yields the current
belief-base (immutable),

DEPARTMENTOF INFORMATICS 40

MAPC 2011 DOCUMENTATION

• Collection<LogicGoal> getGoalBase() yields the current goal-
base (immutable),

• Collection<Percept> getAllPercepts() yields all percepts that
are currently available (the EISMASSimdescription contains an overview),

• Collection<Message> getMessages() yields all messages that have
been sent to the agent,

• void sendMessage(LogicBelief belief, String receiver)
sends a message to a recipient,

• LinkedList<LogicBelief> getAllBeliefs(String predicate)
returns all beliefs that have a given predicate,

• void removeBeliefs(String predicate) removes all beliefs that
have a given predicate,

• void removeGoals(String predicate) removes all goals that have
a given predicate,

• void addBelief(LogicBelief belief) adds a belief to the belief-
base,

• void addGoal(LogicGoal goal) adds a goal to the goal-base,

• boolean containsBelief(LogicBelief belief) returns true if
the belief-base contains a given belief,

• boolean containsGoal(LogicGoal goal) returns true if the goal-
base contains a given goal,

• void clearBeliefs() empties the belief-base, and

• void clearGoals() empties the goal-base.

6 Conclusion

In this document we have provided the complete technical documentation
of theMulti-Agent Programming Contest 2011. The outcomes of the contest
will be analyzed in depth in an upcoming Technical Report.

41 Technical Report IfI-12-01

References

References

[Behrens et al., 2010] Behrens, T., Dastani, M., Dix, J., Köster, M., and No-
vak, P., editors (2010). Special Issue about Multi-Agent-Contest, volume ?? of
Annals of Mathematics and Artificial Intelligence. Springer, Netherlands.

[Behrens et al., 2009] Behrens, T. M., Dastani, M., Dix, J., and Novák, P.
(2009). Agent contest competition: 4th edition. In Hindriks, K. V.,
Pokahr, A., and na, S. S., editors, Programming Multi-Agent Systems, 6th In-
ternational Workshop (ProMAS 2008), volume 5442 of Lecture Notes in Com-
puter Science, pages 211–222. Springer.

[Dastani et al., 2005] Dastani, M., Dix, J., and Novák, P. (2005). The first con-
test on multi-agent systems based on computational logic. In Toni, F. and
Torroni, P., editors, Computational Logic in Multi-Agent Systems, 6th Inter-
national Workshop, CLIMA VI, volume 3900 of Lecture Notes in Computer
Science, pages 373–384. Springer.

[Dastani et al., 2006a] Dastani, M., Dix, J., and Novák, P. (2006a). The first
contest on multi-agent systems based on computational logic. In Toni, F.
and Torroni, P., editors, Computational Logic in Multi-Agent Systems (CLIMA
VI), volume 3900 of Lecture Notes in Artificial Intelligence, pages 373–384.
Springer. 6th International Workshop.

[Dastani et al., 2006b] Dastani, M., Dix, J., and Novák, P. (2006b). The sec-
ond contest on multi-agent systems based on computational logic. In
Inoue, K., Satoh, K., and Toni, F., editors, Computational Logic in Multi-
Agent Systems, 7th International Workshop, CLIMA VII, volume 4371 of Lec-
ture Notes on Computer Science, pages 266–283. Springer.

[Dastani et al., 2007] Dastani, M., Dix, J., and Novák, P. (2007). The second
contest on multi-agent systems based on computational logic. In Inoue,
K., Satoh, K., and Toni, F., editors, Proceedings of CLIMA ’06, Revised Selected
and Invited Papers, Lecture Notes in Artificial Intelligence, pages 266–283.
Springer.

[Dastani et al., 2008a] Dastani, M., Dix, J., and Novák, P. (2008a). Agent
contest competition - 3rd edition. In Dastani, M., Ricci, A., El Fal-
lah Seghrouchni, A., and Winikoff, M., editors, Proceedings of ProMAS ’07,
Revised Selected and Invited Papers, Lecture Notes in Artificial Intelligence.
Springer.

[Dastani et al., 2008b] Dastani, M., Dix, J., and Novák, P. (2008b). Agent
contest competition - 4th edition. In Proceedings of Sixth international
Workshop on Programming Multi-Agent Systems, ProMAS’08, volume 5442 of
LNAI. Springer Verlag.

DEPARTMENTOF INFORMATICS 42

	Introduction
	Scenario Description
	Background Story
	The Challenge
	Graph Coloring Algorithm
	Teams & All Terrain Planetary Vehicles
	Agent Actions
	Disabled Agents
	Money
	Percepts
	Simulation state transition

	Agent-Server Communication
	Communication Protocol Overview
	Reconnection
	XML Messages Description

	Simulation Server
	Starting MASSim
	Configuring MASSim
	General Configuration
	Simulation Configuration
	Accounts Configuration

	Agent Development
	Using EISMASSim
	Configuring EISMASSim
	Actions and Percepts for the Mars-Scenario
	Programming Java Agents
	Running Our Dummy-Agents
	Changing the Configuration
	Creating Your Own Agents

	Conclusion

