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Multi-Agent Programming Contest

2011 Edition

Evaluation and Team Descriptions

Tristan Behrens, Jürgen Dix, Michael Köster, Federico Schlesinger

Abstract
TheMulti-Agent Programming Contest is an annual competition in agent-
based artificial intelligence. The year 2011 marked the beginning of a new
phase with the introduction of the Agents-on-Mars-scenario. The focus
was shifted towards heterogeneous multi-agent systems with both com-
petitive and cooperative agent interaction. On top of that, new means for
evaluating the performance of individual agents and whole agent teams
were designed and established. In this document we will provide a sys-
tematic, statistical evaluation of the 2011 tournament. In a second part
we will also present in-depth descriptions of the participating teams.

Part I

Contest Evaluation

1 Introduction

In this Technical Report, we give a comprehensive evaluation of the results
of the Multi-Agent Programming Contest1 2011 edition. The Contest is an
annual international event that started in 2005. In 2011 the competition
was organized and held for the seventh time. The Contest is an attempt to
stimulate research in the field of programming multi-agent system by

1. identifying key problems,

2. collecting suitable benchmarks, and

3. gathering test cases which require and enforce coordinated action that
can serve as milestones for testing multi-agent programming languages,
platforms and tools.

1http://multi-agentcontest.org
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TheMulti-Agent Programming Contest

Research communities benefit from competitions that (1) attempt to eval-
uate different aspects of the systems under consideration, (2) allow for com-
paring state of the art systems, (3) act as a driver and catalyst for develop-
ments, and (4) define challenging research problems.

In this report we extend the work presented in [Behrens et al., 2012b], by
focusing on the outcomes of the Contest. The document is organized as fol-
lows: We firstly mention some related work in Section 2, and then briefly
describe the Contest in section 2. In Section 4 a short description of each of
the participating teams is provided. Section 5 presents the main contribu-
tions of this paper, with an in-depth analysis of the results of the Contest.
Finally we present a conclusion and future work in section 6.

Part II of this document presents the in-depth team descriptions provided
by team developers themselves. These descriptions follow a template pro-
vided by theMulti-Agent Programming Contest organization (a requirement
for the participation).

2 Related Work

TheMulti-Agent Programming Contest has generated several publications in
the recent years [Dastani et al., 2005, Dastani et al., 2006b, Dastani et al., 2008a,
Dastani et al., 2008b, Behrens et al., 2009, Behrens et al., 2010]. Similar con-
tests, competitions and challenges are Google’s AI challenge2, the AI-MAS Win-
ter Olympics3, the Starcraft AI Competition4, the Mario AI Championship5, the
ORTS competition6, and the Planning Competition7. All these competition are
defined in their own research niches. Our Contest has been designed for
problem solving approaches that are based on formal approaches and com-
putational logics, thus distinguishing it from the other competitions.

3 The Multi-Agent Programming Contest

The Multi-Agent Programming Contest was initiated in 2005 and since then
went through three distinct phases. The first phase began in 2005 with the
“food-gatherers”-scenario, where a pre-specified multi-agent system had to
be implemented. These MASs were later examined in order to determine the
winner. From 2006 - 2007 the “goldminers”-scenario was used. This time it

2http://aichallenge.org/
3http://www.aiolympics.ro/
4http://eis.ucsc.edu/StarCraftAICompetition
5http://www.marioai.org/
6http://skatgame.net/mburo/orts/
7http://ipc.icaps-conference.org/
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is provided an environment by means of an online-architecture, and auto-
matically determined the winner. Then from 2008 - 2010 we ran the “cows
and cowboys”-scenario, again on the same online-architecture.

We noticed that most approaches used in the agent contest in the last
years were centralized, contrary to the philosophy of multi-agent program-
ming (MAP). Even the accumulated knowledge of the agents was maintained
centrally and shared by internal communication. This aspect has motivated
the definition of a new scenario, which is described next.

3.1 The 2011 Scenario

In this year’s Contest (for a detailed description see [Behrens et al., 2012a])
the participants have to compete in an environment that is constituted by
a graph where the vertices have an unique identifier and also a number that
determines the value of that vertex. The weights of the edges on the other
hand denotes the costs of traversing the edge.

A zone is a subgraph (with at least two nodes) whose vertices are colored by
a specific graph coloring algorithm. If the vertices of a zone are colored with
a certain team color it is said that this team occupies this area. The value of a
zone is determined by the sum of its vertices’ values. Since the agents do not
know a priori the values of the vertices, only probed vertices contribute with
their full value to the zone-value, unprobed ones only contribute one point.

The goal of the game is to maximize the score. The score is computed by
summing up the values of the zones and the current money for each simula-
tion step:

score =

steps∑
s=1

(zoness + moneys)

Here steps is the number of simulation steps, and zoness and moneys are
the current sum of all zone values and the current amount of money respec-
tively.

Figure 1 shows such a scenario. The numbers depicted in the vertices de-
scribe the values of the water wells while the distance of two water wells is
labeled with travel costs. The green team controls the green zone while the
blue team has the smaller blue zone. The value of the blue zone, assuming
that all vertices have been probed by the blue team, is 24.

4 Brief Team-Descriptions

A total of nine teams from all around the world took part in the 2011 edition
of the tournament (see Table 1). In the following, a brief description of each
of those teams is given. The full descriptions provided by the teams them-
selves can be found in part II of this document.
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Brief Team-Descriptions

Figure 1: A screenshot.

The d3lp0r team from Universidad Nacional del Sur, Argentina, was imple-
mented to show that argumentation via defeasible logic programming can
be applied in a multi-agent gaming situation. It has been implemented us-
ing Python, Prolog and DeLP. The solution is a decentralized architecture,
where each agent runs as an individual process and percepts are shared via
a broadcasting mechanism with a minimal complexity. This coordination
mechanism is facilitated by a perception server that gathers and distributes
all relevant percepts. Decision making takes place on an individual agent
level and has no centralized characteristics. The team’s main strategy is to
detect profitable zones based on the data collected about explored vertices
and position the agents correctly to maintain, defend and expand the zones.

The HactarV2 team from TU Delft, Netherlands, was implemented using
the GOAL agent-oriented programming language with Prolog as the knowl-
edge representation language. The team follows a decentralized strategy ba-
sed on an implicit coordination mechanism, where agents predict the ac-
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Team Affiliation Language
d3lp0r Universidad Nacional del Sur, Argentina Prolog/Python

HactarV2 TU Delft, Netherlands GOAL
HempelsSofa Universität Göttingen, Germany Java

Nargel Arak University, Iran Java/JADE
Python-DTU Technical University of Denmark Python

Simurgh Arak University, Iran Java/JADE
Sorena Arak University, Iran JACK

TUB TU Berlin, Germany JIAC V
UCDBogtrotters University College Dublin, Ireland AgentFactory

Table 1: Participants overview.

tions that other agents perform and base their own choice of actions on that
prediction. The agents share all data about the map and opponents with
each other, while neither using a centralized information store nor a cen-
tral coordination manager. The team’s main strategy is to firstly compute
the zone with the highest value and secondly building and maintaining a
swarm of agents around the node with the highest value.

HempelsSofa8 has been developed at Göttingen University. The team is
based on a solution that has been implemented during a course on multi-
agent programming, held at Clausthal University of Technology. The agents
were developed in Java using a simplified architecture that allows for an ex-
plicit mental state and inter-agent communication. All agents are executed
in a single process and each agent has access to a shared world model that is
updated every time and agent perceives something.

Python-DTU from Technical University of Denmark is based on an auction
based agreement approach and has been implemented in Python. The solu-
tion is decentralized, allowing agents to share percepts through shared data
structures and coordinate their actions via distributed algorithms. Agents
share all new percepts in order to keep the agents’ internal world models
identical. In the first ten percent of each simulation the team explores the
map and inspects the opponents. After that, a valuable zone is conquered
and maintained while letting saboteurs attack and repairers repair. Valuable
zone detection is facilitated by firstly selecting the most valuable known ver-
tex and then focusing on vertices around the selected one. Communication
and coordination involves placing bids on different goals and then execut-
ing an auction-based agreement algorithm.

Team Nargel from Arak University, Iran, is a true multi-agent system devel-
oped using Java for agent behaviors and JADE for agent communication. The
performance of the agents was on a level that did not require any distribution

8The team HempelsSofa took part in the Contest out of competition.
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of agents on different machines. The team strategy is based on the intent
to conquer zones, while also disturbing the opponent’s ones. The disturb-
ing behavior is more successful than the zone making strategy. Agents share
their acquired knowledge by means of inter-agent communication only and
thus do not have a centralized pool if information. On top of that, inten-
tions are also on an individual agent level, thus resulting in a decentralized
coordination approach.

The Simurgh team, also from Arak University, made use of Java as an agent
implementation language, while using the Gaia methodology for analysis
and design. The team uses a decentralized coordination and cooperation
mechanism, in which agents share their percepts via a shared communica-
tion channel. Agents autonomously generate goals based on their knowl-
edge. Goals in conflict are resolved. Each agent is executed in its own thread
and has its own world model. The agents are divided into three groups. The
zone holders are responsible for creating and maintaining zones using a scat-
tering algorithm. The world explorers intent to complete their world model
quickly. And the repairers strive to repair disabled agents as soon as possible.

Sorena is the third team from Arak University. The developers used the
Prometheus methodology for the system specification and the JACK agent
platform for actually implementing and executing the agents.

The TUB team comes from Berlin Technical University. The team’s devel-
opment has been done by roughly following the JIAC methodology. The
team is completely decentralized, while each agent is perfectly capable of
performing each role. Usually one agent is responsible for zoning and agents
position themselves on the map using a simple voting protocol. Agents share
all their percepts, which, although having a high complexity, worked per-
fectly for the small team. The team makes use of both implicit and explicit
coordination. Implicit coordination is considered to be achieved by sharing
intentions. Explicit coordination, however, is only used for the collabora-
tion of inspectors and saboteurs. From the beginning each agent follows its
own achievement collections strategy. The zone score on the other hand is
locally optimized by letting agents move to the next node that improves the
zone.

The UCDBogtrotters team from University College Dublin, Ireland, has been
implemented using the AF-TeleoReactive and AF-AgentSpeak multi-agent pro-
gramming languages running on the AgentFactory platform. The overall
team strategy involves a leader agent, which assigns tasks to other agents,
and platform services for information sharing. Finding zones is facilitated
by a simple clustering algorithm. The team combines a set of role dependent
strategies and the overall zone creation strategy.

DEPARTMENTOF INFORMATICS 6
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Pos. Team Score Difference Points
1 HactarV2 2,979,591 : 734,185 2,245,406 72
2 Python-DTU 3,468,448 : 745,940 2,722,508 60
3 TUB 2,835,401 : 914,883 1,920,518 57
4 UCDBogtrotters 2,379,663 : 1,459,391 920,272 45
5 HempelsSofa 1,243,262 : 2,185,634 -942,372 36
6 Simurgh 928,893 : 2,219,281 -1,290,388 18
7 Sorena 888,631 : 2,366,805 -1,478,174 15
8 d3lp0r 888,837 : 3,821,088 -2,932,251 15
9 Nargel 765,296 : 1,930,815 -1,165,519 6

Table 2: Final Ranking.

5 Contest Organization and Results

5.1 Tournament Organization

The rules of the tournament indicated that every team had to compete in
a match against each of the other eight teams. The winner of the tourna-
ment was the team that earned the most tournament-points in total (as op-
posed to in-simulation points). Matches consisted of 3 independent simu-
lations, played in randomly generated maps of 3 different predefined sizes.
Tournament-points were awarded in a per-simulation basis: winning a sim-
ulation was worth 3 tournament points, whereas no points where given to
the losing team. In the unlikely event of a tie, both teams would be given 1
point.

The tournament took place from 5th to 9th of September 2011. For each
day of the contest, the teams where divided in 3 groups of 3 teams, and
played against each other within the group. Each group was assigned to a dif-
ferent server, so matches from different groups were held in parallel. Groups
where resorted every day to make sure every combination was covered and
every team played against each other exactly once.

5.2 Tournament Results

The four days of competition allowed team HactarV2 to stand out as the clear
winner, after defeating their opponents in every single simulation they took
place in. Team Python-DTU achieved a distinguished second place, being the
team that collected the biggest simulation-score sum throughout the tour-
nament. A close third was TUB, only 3 points below. The complete final
ranking is depicted in Table 2.

We present the result of each simulation of each match in Section 5.3.
Matches are presented in chronological order; this is relevant to some of the
results because some teams experienced bugs and connection problems that
were not detected in the two-week connection-testing period before the tour-
nament, and which in most cases were corrected during the competition.
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Further information in this regard is given in Section 5.4, which is also con-
cerned with the agent teams’ quality and stability. Next, in Section 5.5, we
analyze simulations individually to a deeper extend by looking at the evolu-
tion and composition of the score. Finally, in Section 5.6, we observe how
actions were selected by each role of each team, and relate this numbers to
that team’s strategy.

5.3 Simulation Results

Match PythonDTU vs. TUB HempelsS. vs. TUB HempelsS. vs. PythonDTU
Sim 1 84,824 62,588 5,953 131,215 4,644 314,353
Sim 2 82,078 65,277 3,140 119,445 5,967 303,220
Sim 3 66,032 68,509 8,846 99,295 4,356 244,999

Match UCD vs. HactarV2 d3lp0r vs. HactarV2 d3lp0r vs. UCD
Sim 1 3,409 238,653 5,253 134,638 16,546 142,091
Sim 2 2,073 147,552 10,863 395,720 3,170 280,481
Sim 3 1,772 186,471 7,888 297,740 264 370,728

Match Simurgh vs. Nargel Sorena vs. Nargel Sorena vs. Simurgh
Sim 1 43,739 29,361 35,393 23,938 41,617 57,245
Sim 2 13,380 41,848 38,270 33,400 53,603 37,215
Sim 3 9,404 66,468 37,603 23,786 51,246 52,054

Table 3: Matches Day 1.

Match TUB vs. Nargel HactarV2 vs. Nargel HactarV2 vs. TUB
Sim 1 112,946 22,462 103,529 23,335 60,001 44,850
Sim 2 109,550 33,086 105,908 27,732 61,203 45,194
Sim 3 91,486 26,849 90,834 28,605 61,787 47,857

Match HempelsS. vs. Sorena d3lp0r vs. Sorena d3lp0r vs. HempelsS.
Sim 1 86,991 44,331 93,362 52,703 49,344 91,276
Sim 2 78,432 45,745 53,852 59,861 29,211 85,869
Sim 3 89,411 45,757 77,687 69,807 48,556 86,796

Match Python-DTU vs. Simurgh UCD vs. Simurgh UCD vs. Python-DTU
Sim 1 109,959 37,986 358,679 6,974 26,147 103,163
Sim 2 229,456 5,060 127,301 20,703 11,559 106,436
Sim 3 103,894 1,243 118,793 36,083 12,699 93,466

Table 4: Matches Day 2.
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Match TUB vs. Simurgh d3lp0r vs. Simurgh d3lp0r vs. TUB
Sim 1 101,839 47,316 32,167 73,716 4,461 401,122
Sim 2 94,264 47,735 46,291 79,094 4,232 336,559
Sim 3 96,152 48,901 64,020 72,134 19,301 169,868

Match HempelsS. vs. Nargel UCD vs. Nargel UCD vs. HempelsS.
Sim 1 96,558 16,638 66,205 28,930 65,272 35,967
Sim 2 77,142 26,696 171,492 16,168 81,933 39,802
Sim 3 76,768 39,299 67,462 32,653 75,197 45,101

Match Sorena vs. HactarV2 Py.-DTU vs. HactarV2 Sorena vs. Py.-DTU
Sim 1 35,040 102,450 43,881 57,652 13,906 313,396
Sim 2 35,243 111,989 46,670 101,998 14,126 240,445
Sim 3 39,717 104,925 40,514 73,955 17,558 123,332

Table 5: Matches Day 3.

Match UCD vs. Sorena Sorena vs. TUB UCD vs. TUB
Sim 1 88,638 29,875 31,773 133,157 51,278 67,730
Sim 2 80,336 28,439 23,482 148,223 28,962 74,957
Sim 3 74,924 24,587 18,949 137,617 72,232 75,701

Match Simurgh vs. HactarV2 HempS. vs. HactarV2 HempS. vs. Simurgh
Sim 1 37,267 85,366 58,134 87,063 66,330 47,881
Sim 2 37,741 92,349 31,167 99,575 63,318 38,998
Sim 3 33,020 90,626 46,960 87,607 54,334 44,004

Match Python-DTU vs. Nargel d3lp0r vs. Nargel d3lp0r vs. Python-DTU
Sim 1 131,224 23,661 99,676 52,094 34,385 100,726
Sim 2 104,713 20,869 92,530 55,810 1,449 308,442
Sim 3 97,123 43,897 57,880 27,711 36,449 76,102

Table 6: Matches Day 4.
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5.4 Teams’ Quality and Stability

In order to analyze the quality and stability of the teams – and to a certain
extent also the stability of the platforms – we summed up the number of ac-
tions sent by an agent in time (i.e., in two seconds) and the actions that failed
due to lack of time. The results are shown in Table 7. Since each team had
the opportunity to test the network connection (and especially the network
bandwidth) two weeks before in some test matches, these results cannot only
give us some hints regarding the overall performance but also some indi-
cations concerning the quality and stability of each agent team. Together
with the experiments we made throughout the Contest, i.e., checking the
network ping and bandwidth, we can conclude the following:

Team Day 1 Day 2 Day 3 Day 4 All
HactarV2 0,67% 0,10% 0% 0% 0,19%

Python-DTU 0% 0,19% 0% 0% 0,05%
TUB 0,03% 0,30% 0,11% 1,08% 0,38%

UCDBogtrotters 39,51% 5,47% 1,55% 0,64% 11,79%
HempelsSofa 8,10% 0,03% 0,08% 4,57% 3,20%

Simurgh 41,14% 42,47% 12,63% 3,03% 24,82%
Sorena 1,85% 6,58% 0,55% 0,37% 2,34%
d3lp0r 29,42% 13,32% 16,79% 0,54% 15,02%
Nargel 6,24% 0,45% 0,91% 1,10% 2,18%

Table 7: Actions not sent in time.

The first three teams HactarV2, Python-DTU and TUB did not have any
problems sending actions in the two second time interval. Their network
connection was good, but more important – as the Contest results (Tab. 2)
show - their agents were able to process the percepts sent by our server and
to provide an useful answer in time.

The UCDBogtrotters had some problems (a bug in the code of the agents)
on the first day. After fixing it the agents were sometimes still too slow. Ad-
ditionally, the explorer agents as well as the inspector agents tried to execute
the parry-action which was not allowed for these rules. For this reason we
argue that the stability was quite okay but the code quality was not perfect.

HempelsSofa had a serious bug at day one and the team performed very
badly. The bug was not detected in an early phase, because the wrong cre-
dentials were used for testing. Afterwards the response time was good. Thus,
the quality and stability was okay, but the testing routines failed.

The Iranian teams Simurgh, Nargel and Sorena faced some network band-
width problems in the test matches. However, they improved there code
and/or used some computers from different countries for the real Contest.
Nevertheless they did not perform well. The results of Simurgh – especially
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when taking into account that they were only sending 60 percent of actions
in time for the first two days – were still okay but the code had some ma-
jor flaws: The explorers and inspectors tried to execute the parry-action which
was not allowed for these rules. The stability and code quality of Nargel and
Sorena can be classified as medium since on day 1 respectively day 2 the teams
had some connection problems.

d3lp0r finally implemented the communication protocol between the ser-
ver and the agent teams in a wrong way. Their agents were not able to attack
other agents if the name of the opponent was starting with an upper case
letter. Aside, only at the very last day they were able to send enough actions
in time. Thus we infer that both, the code quality as well as the stability was
low. The results attest this claim as well.

5.5 Analysis of Individual Matches

In order to further analyze the performance of teams and the effectiveness
of the strategies applied, we now analyze some selected simulations in more
detail. In order to improve comparability we will focus only on the mid-size
map simulations, which in most cases is also representative of the final re-
sult of the match. We present graphs that show the evolution of the current
score throughout a simulation, distinguishing zones-score and achievement
points. This graphs give already by themselves a handful of information, and
sometimes directly reflect aspects of the different strategies applied. Never-
theless, it is interesting in some cases to go further and study some particular
situations of the simulations that can ultimately help in explaining these
graphs.

5.5.1 HactarV2 vs. PythonDTU

The match between HactarV2 vs. PythonDTU (Figure 2) was a decisive one,
as it faced the two teams that ended up being the winner and the runner-
up of the contest. PythonDTU started the simulation well, collecting more
points than HactarV2 during the first steps, both in terms of zones-score and
achievement points. The big difference in terms of achievement points at
this stage was mainly because of HactarV2’s more aggressive buying strategy,
which seems to have paid off as both teams achievement points stabilized
towards the end.

Around step 90, as both teams had explored an adequate portion of the
map and focused on conquering the most valuable nodes at the center of
the map, a particular situation arose, that remained until the end of the
match and gave a huge advantage to HactarV2: Gathered on a single node
where PythonDTU’s repairers and HactarV2’s saboteurs, among some extra
agents. HactarV2’s saboteurs were made strong enough (via the buy action)

11 Technical Report IfI-12-02
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Figure 2: HactarV2 vs. PythonDTU.

so that they could disable opponent agents with a single hit. A cycle began
in which HactarV2’s saboteurs would alternate attacking (and instantly dis-
abling) each of the opponent repairers. Since they were not recharging at the
same time, they could ensure that on every step at least one of them would
be attacking. Python’s repairers contributed to this cycle with their behav-
ior: on every step the enabled repairer would repair the disable one, but also
receive an attack and become disabled for the next step. Then, on the next
step the choice of action for the just disabled repaired would be to recharge
while waiting to be repaired, enabling this vicious circle to continue almost
indefinitely. Figure 3 shows a particular step during this cycle.

The node where all this took place was one of the high-valued ones, so
it remained most of the time in HactarV2’s domination, although some spo-
radic incursions from other PythonDTU’s agents changed that for a few steps.
The two saboteurs of PythonDTU where disabled just before the above-mentioned
cycle started, and of course were not repaired, so they did not represent a
threat anymore. The rest of HactarV2 team could focus on maintaining a
rather big, stable zone, which explains the big difference in the final score.

5.5.2 HactarV2 vs. Simurgh

Figure 4 shows that the simulation of HactarV2 vs. Simurgh began with a
clear domination of the zone-score from HactarV2 team. Several battles took
place right from the beginning, and many of the Simurgh’s agents became
prematurely disabled as result. Both teams attempted to improve their sabo-
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Figure 3: HactarV2 vs. PythonDTU screenshot.

teurs with the early achievement-points obtained, but Simurgh’s saboteurs
prioritized the buy action over attacking, even when sharing location with
other saboteurs; they often got attacked and the buy attempt failed. After
the first steps, the many disabled agents from Simurgh tended to regroup
themselves with the repairers, but HactarV2’s saboteurs remained close and
kept those agents busy most of the simulation. The Simurgh agents could
not handle the situation well, with the repairers repairing with no apparent
role-based priority, and the saboteurs often skipping actions or attempting
buys instead of attacking. The rest of the agents from HactarV2 managed
to build and maintain a valuable zone in the center of the map, which en-
sured the team the big difference in the final score. The fewer free agents
from Simurgh, on the other hand, could build some smaller zones towards
the borders of the maps through the simulation, but these would only earn
the team very few points.

5.5.3 HactarV2 vs. UCDBogtrotters

UCDBogtrotters suffered a lot of connection problems during the first day of
competition (aproximately 40 percent of the actions were not sent in time to
the server. See Subsection 5.4) and that is clearly reflected in Figure 5. Hac-
tarV2 was presented with almost no resistance from their opponents, and
took advantage of it gathering several points. The peaks in the graph around
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Figure 4: HactarV2 vs. Simurgh.

steps 100, 300, and 700 correspond to moments during the simulation in
which all agents from UCDBogtrotters were disabled, thus giving HactarV2
domination of the entire map.
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Figure 5: HactarV2 vs. UCDBogtrotters.
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5.5.4 HempelsSofa vs. UCDBogtrotters

Figure 6: HempelsSofa vs. UCDBogtrotters.

Figure 6 shows an interesting simulation between HempelsSofa and UCD-
Bogtrotters, with clear domination of the latter. During the initial phase it
appears as if both teams were able to locate the most valuable nodes at the
center of the map, and towards step 66 they both tried to build zones there.
Figure 7 shows however a big difference between those zones: UCDBogtrot-
ters’ expands in more nodes, while HempelsSofa team tend to gather more
agents in fewer nodes, resulting in a very small zone, that is even less worthy
because of unprobed nodes.

Later during the simulation, around step 100, UCDBogtrotters managed
to conquer the center of the map. HempelsSofa agents started alternating
between moving in zone-formation around the center (with rather low zone-
scores), and engaging in battle in the center, not very successfully. A couple
of times during the simulation, the only few agents from HempelsSofa still
enabled move around the center and become surrounded by agents from
UCDBogtrotters, as shown in Figure 8, where UCDBogtrotters gain domina-
tion of almost the complete map, except for this few nodes in the center.
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Figure 7: HempelsSofa vs. UCDBogtrotters screenshot.
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Figure 8: HempelsSofa vs. UCDBogtrotters screenshot.
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5.5.5 PythonDTU vs. UCDBogtrotters

Figure 9: PythonDTU vs. UCDBogtrotters.

At the beginning of the match, that is in the first 50 steps, UCD seems to
group most of the agents together on few nodes. This approach makes it eas-
ier for to be attacked, and less efficient when it comes to exploring the map,
because they probed less nodes. Python, however, explores more, moves in
relatively open groups, while maintaining ample zones. At step 57 Python
manages to isolate a corner section of the map, establishing a rather big zone
(see Figure 10). The value of the zone is 108, while only a quarter of the nodes
in that very zone have been probed. At step 106 PythonDTU isolates a single
UCD agent in the center of the map, conquering the entire map except for
the isolated nodes.

At step 107 (and following) too many UCD agents, that is up to eight ones,
stand on a single node, while the other two agents are disabled. Thus no
zones are conquered. From PythonDTU, only saboteurs and repairers stand
on the node. The explorer joins from time to time, apparently to win dom-
ination of that node for zone-making purposes. When PythonDTU gains
domination of this node repeatedly, the team conquers the whole map. The
team then also gains the probed-40-nodes achievement. The UCD saboteurs
engage in battle and the repairers are constantly repairing other agents. But
the remaining enabled agents do not leave the node. Instead they keep on
parrying and recharging. Eventually the saboteurs leave the node, when
they are disabled and sometimes being repaired at the same step).

At step 127 a PythonDTU saboteur follows a just repaired UCD saboteur
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Figure 10: PythonDTU vs. UCDBogtrotters screenshot.

that leaves the previous node, thus ending the rather balanced situation.
The rest of the agents move as well. PythonDTU maintains the previously
conquered zone, while the free agents follow UCD’s ones. We can observe
similar situations in the two other peaks. At step 605 UCD establishes a big-
ger zone, but un-probed nodes result in PythonDTU getting bigger score. Af-
ter that the UCD agents create a formation that is off-center.
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5.5.6 Simurgh vs. d3lp0r

Figure 11: Simurgh vs. d3lp0r.

A first glimpse at Figure 11 reveals that the confrontation between Simurgh
and d3lp0r was most of the time dominated by the former in terms of zone
score, and completely in terms of achievement points. A fact that probably
had a huge impact on this result was that a bug in d3lp0r’s saboteurs made
all of their attacks fail: internally, their processing used lowercase versions
of identifiers for the enemy agents and they then sent this lowercase identi-
fiers to the server which processed identifiers in a case-sensitive manner. Un-
fortunately, this bug remained undetected during the test phases previous
to the competition (d3lp0r only took part in test matches against dummy-
teams, which always used lowercase identifiers) and also during the first days
of competition, since the message sent back to the agents for failed attack did
not make the reason for the failure obvious.

Contributing to the big difference regarding the achievement points of
the two teams was also an apparent limitation in the choice of action for
d3lp0r’s agents, most likely due to an strict focus in the zone-making compo-
nent of the score. Surely the team was unable to obtain any attack-achieve-
ment, but it also did not earn any of the inspect-achievements nor any of the
parry-achievements. An interesting fact of the game that is evidenced here is
that almost not using any of the parry action gives the opposite team more
than an instant advantage: It also means less parry-achievements for oneself
and more attack-achievements for the opponents (Simurgh kept attacking
constantly and earned up to the attacked320 achievement) and this might
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certainly reflect in the final score. The instant advantage of parrying can be
argued, since it means consuming a turn and energy in an action that may
be unrelated to that agent’s current goal, and that is not guaranteed to be
useful (i.e. the opponent saboteur may not attack that particular agent, or at
all during that turn). Instead, d3lp0r team seemed to rely on the efficiency of
their repairers, which was in fact quite good: most of the team’s agents were
enabled during most of the match, except for that peak in the graph around
step 350, where Simurgh managed to disable all d3elp0r’s agents and gain
complete domination of the map. Nevertheless, the efficiency of d3lp0r’s
repairers also meant that Simurgh’s saboteurs always had enabled opponent
agents to attack and keep obtaining attack-achievements.

Simurgh’s zone was more stable than d3lp0r’s, as more of its agents tended
to remain in a bigger single-zone formation, that started on an edge of the
map and moved to the center towards the end of the simulation. The agents
of d3lp0r, on the other hand, moved around the map in smaller groups. This,
plus the fact that only Simurgh could count with all their agents enabled
during the whole simulation, can explain the difference in their zone-scores.
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5.5.7 Simurgh vs. PythonDTU

Figure 12: Simurgh vs. PythonDTU.

The match between Simurgh and PythonDTU (Figure 12) does not allow
for much analysis. Simurgh had some severe problems in sending actions in
time (see Subsection 5.4) which resulted in PythonDTU competing against a
team of static agents. PythonDTU could easy disable all of Simurgh’s agents
quickly to conquer the whole map, and the situation kept going on until
the game was well advanced. Then one of Simurgh’s vehicles could be re-
paired, and PythonDTU lose domination of the complete map. Nevertheless
PythonDTU’s agent were already located forming a big zone in the center,
that remained unchallenged in the rest of the simulation.

5.5.8 Simurgh vs. TUB

In the game Simurgh vs. TUB (Figure 13) stabilized after the first hundred
steps with both teams competing for the center nodes, but with TUB do-
ing it more efficiently, engaging less agents in the battle and leaving the rest
around to compose bigger zones. As a result, although the domination of the
central nodes fluctuated from one team to the other, TUB’s zone were con-
sistently more valuable than Simurgh’s, as can be clearly seen in the graphic.

It can also be noted that both teams had a different approach regarding
the achievement points: for Simurgh, they represented the major compo-
nent of the score, so they didn’t expend them, while TUB used part of them
to improve their saboteurs.
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Figure 13: Simurgh vs. TUB.

5.5.9 Sorena vs. Nargel

The match between Sorena and Nargel (Figure 14) was a unique case during
the competition, as the factor that defined the winner was the achievement
points rather than the zone-score. For Sorena, the winner, the final score was
composed by 15.496 points from the accumulated zone-score and 22.774
from accumulated achievement points, whereas for Nargel these values were
16.348 and 17.052 respectively.

Even more interesting is the fact that Nargel actually earned more achie-
vement points than Sorena, but they spent some of them improving their
agents, while Sorena spent none. The total accumulated points from the
achievements they spent sum 7384 points, which is more than the differ-
ence towards Sorena in the final score. Nevertheless, this cannot lead to
the conclusion that Nargel would have won the simulation had they kept all
their achievement-points, since their performance regarding making zones
and earning achievements would probably have been lower if they had not
bought those improvements.

None of the teams were strong regarding zone-making; they were never
able to build a zone worth more than 100 points, and their average zone val-
ues were close to 20. Both teams moved their agents forming small, erratic
zones around the map.
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Figure 14: Sorena vs. Nargel.

5.5.10 Sorena vs. UCDBogtrotters

UCDBogtrotters clearly dominated the match against Sorena (Figure 15). From
the beginning, UCDBogtrotters managed to place its agents on the center of
the map and build a very valuable zone. Sorena’s agents, on the other hand,
wondered around the rest of the map, only dominating small zones inter-
mittently.

Both teams had opposed approaches regarding achievement points: UCD-
Bogtrotters spent most of the points for improving agents, clearly stating
that zone-building was their main priority. In contrast, Sorena made their
achievement-points its main score component, and spent none of them in
improving agents. In this simulation though, the excellent zone-making
performance from UCDBogtrotters was impossible for Sorena to compensate
with their achievement points as they did in the closer match against Nargel.
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Figure 15: Sorena vs. UCDBogtrotters.
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5.5.11 TUB vs. HactarV2

Figure 16: TUB vs. HactarV2.

TUB vs. HactarV2 (Figure 16) was a good match between two well-perform-
ing contenders. Both teams located the best nodes at the center of the map
and engaged in a fierce battle for their domination, using aggressive strate-
gies. HactarV2 managed to keep the central nodes for most of the time, and
thus make a difference in the score to win the simulation.

A configuration with all saboteurs and repairers from both teams battling
in a single node repeated several times during the simulation, in different
nodes. Other agents joined them from time to time but remained mostly in
a position useful for zone domination.

In terms of achievement points, the two teams also behaved very simi-
larly to each other, spending most of these points in improvements for their
saboteurs. The achievements also reflect the aggressive strategies used: both
teams reached achieved320. But also some differences can be noticed here,
as HactarV2 reached parried160 while TUB did not parry at all.

5.5.12 TUB vs. PythonDTU

The match presented in Figure 17 between TUB and PythonDTU started with
both teams going for the best nodes at the center of the map, first with a
short period of domination from TUB, but then reverted by PythonDTU,
that maintained the domination until the end of the match. The graph sug-
gests that PythonDTU started slower, exploring more, and that around step
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Figure 17: TUB vs. PythonDTU.

80 the switched focus to zone-domination, also executing at that time their
buying strategy.

From then on, PythonDTU managed to place its agents forming a sta-
ble zone in the center, and most of them remained in position for most of
the time, with the exception of the saboteurs and the repairers, that moved
around while fighting against TUB’s. The agents from TUB moved around
the center also building zones but more unstable ones, as they where mov-
ing around.

Both team used achievement points to improve saboteurs only. TUB did
this right away, whereas PythonDTU delayed the buys for some steps and
ultimately spent more achievement points, getting its saboteurs more health
than TUB’s (and more than TUB’s strength).

5.5.13 TUB vs. UCDBogtrotters

Figure 18 shows a rather unusual shape in the zone-score evolution of UCD-
Bogtrotters. Analyzing the match, the conclusion is that the reason for this
relies on the strange behavior of the explorer agents: on the first few steps,
the explorers began the simulation as usually expected, that is, moving around
and probing nodes. But after a very few steps, they ran across a TUB’s sabo-
teur. The explorers attempted to parry, which is not permitted for their role,
and received the attacks becoming disabled. They got repaired around step
50, but they did not resume probing and instead joined the other agents for
dominating a zone, even though only 8 nodes had been probed at that time
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Figure 18: TUB vs. UCDBogtrotters.

and none of those nodes belonged to the zone.
Until around step 350, UCDBogtrotters maintained this zone in one side

of the map, dominating up to 20 nodes. But since none of those nodes
were probed, the team could only get up to 20 points for that zone. Then,
explorer started moving and probing again until around step 400, and the
team shifted it zone towards the center (where TUB had its zone). This ulti-
mately suggests that UCDBogtrotters implemented a exploring phase at the
beginning of the simulation that lasted for around 50 steps, and that is was
restarted during the game.

TUB on the other hand found the best nodes in the center of the map
at the beginning, and then moved in zone-formation around those nodes,
earning higher zone values. For the fist half of the match they could do this
unchallenged. Then, when UCDBogtrotters agents came closer, they had to
engage in battle, but managed to keep keep the battle off center while retain-
ing the best nodes.
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5.6 Teams’ Statistics

In this section, we focus on the second simulation and describe the overall
behavior of each agent implementing one of the five roles. For a detailed
description of all roles please have a look at the Appendix starting at page 35.
Note, that the values describe the percentage of used actions on average, so
they do not sum up to 100. However, the values reflect the real values quite
accurately. Additionally, we will focus on the five teams HactarV2, Python-
DTU, TUB, UCDBogtrotters and Simurgh.

5.6.1 HactarV2

The explorer used mainly the actions recharge and goto. 55% of all exe-
cuted actions where the recharge actions (against Python-DTU it was even
more than 80%) and approximately 30% the goto-action. Only used 1-2%
was the survey-action. The buy-action was not used once and the probe-
action was executed 5%. All actions that were tried to execute were also suc-
cessfully executed. The repairer did not buy anything either and executed
goto in 30% of the cases. This action was always successful. The action
parry was executed 6% but only one out of four was successful. 53% of all
actions were the recharge. repair was used in 8% and survey in 2%. The
saboteur used 20% the goto action. parry was not used, survey less than
1% and buy just 1%, attack 41%. and recharge 35%. The sentinel exe-
cuted the goto- action in 29% the cases. parry (5%), survey (2%) and buy
(not used) were almost never used. The recharge-rate was around 64%. The
inspector used the action goto in 36% the cases. recharge was done 56%
and inspect (4%) and survey (1%) were almost never used. The action buy
was not used at all.

In summary, only the saboteur was buying new equipment. Additionally,
it was using its special action attack a lot. The other agents were walking
around and using their special actions only from time to time.

5.6.2 Python-DTU

The explorer usedrecharge a lot (85%). And thegoto in 10% the cases. The
action survey was executed less than 1%. buy was never used and probe in
4 of 100 times. The repairer did not use buy and parry.goto was executed
11%, recharge 51%. repair 35% andsurvey almost never (1%). The sabo-
teur did not use parry or survey and almost never buy (less than 1%). goto
(15%) , attack (20%) and recharge (47%) were used more often. The sen-
tinel was mostly only recharging (recharge 77%). buywas not used, parry
in 2% the cases andsurvey just in 4%. The actiongotowas the second most
used action (12% ). The inspector was recharging a lot (84%). Otherwise it
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was running around (goto 12%). inspect (less than 1%), (survey 2%) and
buy (0%) were rarely used.

The saboteur was the only one buying new equipment but even this role
did not use it a lot. The repairer repaired a lot of agents. All other agents were
recharging quite often.

5.6.3 TUB

The explorer used recharge just in 34% the cases. The most often executed
action was goto (52%). survey (5%) and probe (7%) were used to analyze
the topology. However, the agent did not try to improve its values, i.e., the
action buywas never used. The repairer did not execute buynor parry. Also
survey was used in less than 1%. Instead it was trying to repair (29%)
other agents. Therefore it had to go the agents (goto 33%) and sometimes
to recharge (33%). The saboteur did not try to defend itself (parry was
never used), and did not analyze the topology (survey less than 1%). buy
was only used in 1% the cases. Instead it tried to find opponents (goto 20%)
and attack (32%) them. The recharge-rate was around 36%. The sentinel
Did not execute parry or buy and almost never tried to survey (1%). But
it was moving a lot goto 54% and recharging (recharge 44%) when neces-
sary. The inspector, finally, was walking around (goto 55%) and recharging
(recharge 43%). The inspect-acton was used – as well as survey – less
than 1% and buy was not used at all.

The agents of team TUB were walking around quite often, the repairer was
working very well. The saboteur tried to find and deactivate the opponents.
However, the team did not try to improve their agents by buying new things.

5.6.4 UCDBogtrotters

This team had some problems with the connection, so their agents were
sending invalid actions (or no actions in time) quite often. The explorer ex-
ecuted recharge in 43% the cases, goto in 23%. survey only 2% as well
as probe. The buy-action was never used. parry not allowed but tried to
use 7%. The repairer bought in less than 1% the cases something. It was go-
ing around sometimes (goto 7%) and trying to defend itself (parry 24%).
recharge was used 33 of 100 times. The actual repair was executed in 14
out of 100 actions. survey, finally, was almost never used (less than 1%).
The saboteur was walking around (goto 27%), trying to attack 14% oth-
ers. parry was used just in one match but was never successful due to lack
of energy. survey was executed in less than 1% the cases. buy only 1%,
recharge quite often (24%). The sentinel was not really working (a lot of
invalid messages) (goto 11%, parry 8%, survey less than 2%,buy less than
1%, recharge 51%). The inspector was going around (goto 17%) trying
to inspect other agents (inspect 3%) but did not buy anything. Also the
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survey was almost never used (less than 1%). Instead recharge was the
main action (42%). However, this agent had some bug because it was send-
ing a lot of invalid messages and even tried to parry although it was not
allowed for this role.

5.6.5 Simurgh

Since the team Simurgh was not sending actions in time for the first two days,
we only present the data from the one match against HactarV2. The ex-
plorer recharged in 17% the cases and was going around a lot (goto 38%).
The survey-action was executed 4%. probe in 11 of 100 actions. buy was
never used but parry (although not allowed) was tried to use in this match.
The repairer did not buy anything either but tried to defend itself (parry
8%). If not attacked it was searching for agents to repair (goto 15%) and
repaired them (repair 21%). When energy was missing it was recharging
(recharge 32%). Finally, the survey-action was executed in less than 1%
the cases. The saboteur did not try to defend itself (parrywas not used), and
did rarely attack (12%). Aside, the goto (12%) and recharge (16%) were
the main actions. survey (less than 1%) and buy (less than 1%) were almost
never used. These two agents did not that often send actions in time. The
sentinel was just going around (goto 35%), defending itself when necessary
(parry4%), surveying the topology (survey1%) and recharging sometimes
(recharge 39%). buy was not used. Lastly, the inspector walked around
(goto 35%) and recharged (recharge 41%) whenever lacking energy. The
inspect-action was executed in less than 1% cases. This holds for survey
also (1%). The action buy was not used. Additionally, parry was tried to use
in 4% the cases although forbidden by the role.

6 Conclusion and Future Work

In this technical report, we extensively evaluated the Multi-Agent Program-
ming Contest 2011 edition. The seventh edition of the competition intro-
duced a completely new scenario that renewed the enthusiasm from the com-
munity and presented new challenges. The provided problem required the
use of several multi-agent techniques and served as benchmark for compar-
ing different approaches to the implementation of agents. As such, we pre-
sented here enough material to compare teams on a deeper level than just
looking at the scores and we pointed out key points that affected those scores.
From the analyses made, it became clear that in order to perform well in the
competition, a reliable underlying platform for supporting the agent’s exe-
cution was as vital as a the game-related strategies implemented.

The Multi-Agent Programming Contest will take place again in 2012 fol-
lowing the same track of the 2011 edition both in terms of the scenario and
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the post-competition analysis. Slight modifications to the Agents-on-Mars
scenario will be introduced and the number of agents competing simultane-
ously will be increased, augmenting the challenge. At the same time, more
emphasis will be put in the recollection of information during the compe-
tition, to keep broadening the ways in which we assess the performances of
the participating teams.
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A Detailed Team Statistics

In this Appendix we present the team’s statistics for each role. However, we
focus only on the second simulation and the seven interesting matches.

The tables consist of six columns. The “Status” can be either “not used”
if the action was not used at all or “not allowed” if the action is not allowed
to be performed by that particular role. “Action” refers to the name of the
action and “Frequency” to the amount of successful and not successful ex-
ecutions. “Success” describes the percentage of successful executions. The
“Overall” rate tells us how often this action was executed in comparison to
all other actions and the last column shows how often this action was used
successfully.

Status Action Frequency Success Overall O. Success
not used buy

goto 92 of 92 100,00% 12,27% 12,27%
probe 21 of 21 100,00% 2,80% 2,80%
recharge 613 of 613 100,00% 81,73% 81,73%
skip 0 of 10 0,00% 1,33% 0,00%
survey 14 of 14 100,00% 1,87% 1,87%

not used buy
goto 122 of 122 100,00% 16,27% 16,27%
probe 24 of 24 100,00% 3,20% 3,20%
recharge 584 of 584 100,00% 77,87% 77,87%
skip 0 of 4 0,00% 0,53% 0,00%
survey 16 of 16 100,00% 2,13% 2,13%

Table 8: HactarV2 vs. Python-DTU – HactarV2 Explorer.
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Status Action Frequency Success Overall O. Success
not used buy

goto 69 of 69 100,00% 9,20% 9,20%
parry 0 of 2 0,00% 0,27% 0,00%
recharge 646 of 646 100,00% 86,13% 86,13%
repair 8 of 8 100,00% 1,07% 1,07%
skip 0 of 5 0,00% 0,67% 0,00%
survey 20 of 20 100,00% 2,67% 2,67%

not used buy
goto 258 of 258 100,00% 34,40% 34,40%
parry 0 of 17 0,00% 2,27% 0,00%
recharge 429 of 429 100,00% 57,20% 57,20%
repair 32 of 32 100,00% 4,27% 4,27%
skip 0 of 9 0,00% 1,20% 0,00%
survey 5 of 5 100,00% 0,67% 0,67%

Table 9: HactarV2 vs. Python-DTU – HactarV2 Repairer.

Status Action Frequency Success Overall O. Success
attack 532 of 532 100,00% 70,93% 70,93%
buy 4 of 4 100,00% 0,53% 0,53%
goto 25 of 25 100,00% 3,33% 3,33%

not used parry
recharge 179 of 180 99,44% 24,00% 23,87%
skip 0 of 9 0,00% 1,20% 0,00%

not used survey
attack 527 of 527 100,00% 70,27% 70,27%
buy 4 of 4 100,00% 0,53% 0,53%
goto 27 of 27 100,00% 3,60% 3,60%

not used parry
recharge 185 of 186 99,46% 24,80% 24,67%
skip 0 of 5 0,00% 0,67% 0,00%
survey 1 of 1 100,00% 0,13% 0,13%

Table 10: HactarV2 vs. Python-DTU – HactarV2 Saboteur.
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Status Action Frequency Success Overall O. Success
not used buy

goto 69 of 69 100,00% 9,20% 9,20%
parry 0 of 7 0,00% 0,93% 0,00%
recharge 647 of 648 99,85% 86,40% 86,27%
skip 0 of 8 0,00% 1,07% 0,00%
survey 18 of 18 100,00% 2,40% 2,40%

not used buy
goto 88 of 88 100,00% 11,73% 11,73%
parry 12 of 17 70,59% 2,27% 1,60%
recharge 631 of 632 99,84% 84,27% 84,13%
skip 0 of 7 0,00% 0,93% 0,00%
survey 6 of 6 100,00% 0,80% 0,80%

Table 11: HactarV2 vs. Python-DTU – HactarV2 Sentinel.

Status Action Frequency Success Overall O. Success
not used buy

goto 162 of 162 100,00% 21,60% 21,60%
inspect 41 of 41 100,00% 5,47% 5,47%
recharge 525 of 527 99,62% 70,27% 70,00%
skip 0 of 9 0,00% 1,20% 0,00%
survey 11 of 11 100,00% 1,47% 1,47%

not used buy
goto 222 of 222 100,00% 29,60% 29,60%
inspect 42 of 44 95,45% 5,87% 5,60%
recharge 464 of 466 99,57% 62,13% 61,87%
skip 0 of 9 0,00% 1,20% 0,00%
survey 9 of 9 100,00% 1,20% 1,20%

Table 12: HactarV2 vs. Python-DTU – HactarV2 Inspector.
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Status Action Frequency Success Overall O. Success
not used buy

goto 83 of 83 100,00% 11,07% 11,07%
probe 31 of 33 93,94% 4,40% 4,13%
recharge 630 of 632 99,68% 84,27% 84,00%
skip 0 of 2 0,00% 0,27% 0,00%

not used survey
not used buy

goto 60 of 60 100,00% 8,00% 8,00%
probe 29 of 29 100,00% 3,87% 3,87%
recharge 648 of 648 100,00% 86,40% 86,40%
skip 0 of 13 0,00% 1,73% 0,00%

not used survey

Table 13: HactarV2 vs. Python-DTU – Python-DTU Explorer.

Status Action Frequency Success Overall O. Success
not used buy

goto 34 of 34 100,00% 4,53% 4,53%
not used parry

recharge 342 of 342 100,00% 45,60% 45,60%
repair 359 of 359 100,00% 47,87% 47,87%
skip 0 of 7 0,00% 0,93% 0,00%
survey 8 of 8 100,00% 1,07% 1,07%

not used buy
goto 34 of 34 100,00% 4,53% 4,53%

not used parry
recharge 339 of 340 99,71% 45,33% 45,20%
repair 364 of 364 100,00% 48,53% 48,53%
skip 0 of 5 0,00% 0,67% 0,00%
survey 7 of 7 100,00% 0,93% 0,93%

Table 14: HactarV2 vs. Python-DTU – Python-DTU Repairer.
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Status Action Frequency Success Overall O. Success
attack 26 of 26 100,00% 3,47% 3,47%
buy 1 of 1 100,00% 0,13% 0,13%
goto 24 of 24 100,00% 3,20% 3,20%

not used parry
recharge 688 of 689 99,85% 91,87% 91,73%
skip 0 of 10 0,00% 1,33% 0,00%

not used survey
attack 49 of 61 80,33% 8,13% 6,53%
buy 2 of 2 100,00% 0,27% 0,27%
goto 25 of 25 100,00% 3,33% 3,33%

not used parry
recharge 654 of 654 100,00% 87,20% 87,20%
skip 0 of 8 0,00% 1,07% 0,00%

not used survey

Table 15: HactarV2 vs. Python-DTU – Python-DTU Saboteur.

Status Action Frequency Success Overall O. Success
not used buy

goto 115 of 115 100,00% 15,33% 15,33%
parry 0 of 20 0,00% 2,67% 0,00%
recharge 579 of 579 100,00% 77,20% 77,20%
skip 0 of 5 0,00% 0,67% 0,00%
survey 31 of 31 100,00% 4,13% 4,13%

not used buy
goto 123 of 123 100,00% 16,40% 16,40%
parry 0 of 158 0,00% 21,07% 0,00%
recharge 429 of 429 100,00% 57,20% 57,20%
skip 0 of 15 0,00% 2,00% 0,00%
survey 24 of 25 96,00% 3,33% 3,20%

Table 16: HactarV2 vs. Python-DTU – Python-DTU Sentinel.
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Status Action Frequency Success Overall O. Success
not used buy

goto 79 of 79 100,00% 10,53% 10,53%
inspect 4 of 4 100,00% 0,53% 0,53%
recharge 640 of 641 99,84% 85,47% 85,33%
skip 0 of 9 0,00% 1,20% 0,00%
survey 17 of 17 100,00% 2,27% 2,27%

not used buy
goto 98 of 98 100,00% 13,07% 13,07%
inspect 5 of 6 83,33% 0,80% 0,67%
recharge 617 of 620 99,52% 82,67% 82,27%
skip 0 of 9 0,00% 1,20% 0,00%
survey 17 of 17 100,00% 2,27% 2,27%

Table 17: HactarV2 vs. Python-DTU – Python-DTU Inspector.
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Status Action Frequency Success Overall O. Success
not used buy

goto 300 of 300 100,00% 40,00% 40,00%
probe 30 of 30 100,00% 4,00% 4,00%
recharge 410 of 410 100,00% 54,67% 54,67%
skip 0 of 6 0,00% 0,80% 0,00%
survey 4 of 4 100,00% 0,53% 0,53%

not used buy
goto 286 of 286 100,00% 38,13% 38,13%
probe 25 of 25 100,00% 3,33% 3,33%
recharge 425 of 425 100,00% 56,67% 56,67%
skip 0 of 6 0,00% 0,80% 0,00%
survey 8 of 8 100,00% 1,07% 1,07%

Table 18: HactarV2 vs. Simurgh – HactarV2 Explorer.

Status Action Frequency Success Overall O. Success
not used buy

goto 289 of 289 100,00% 38,53% 38,53%
parry 6 of 19 31,58% 2,53% 0,80%
recharge 374 of 376 99,47% 50,13% 49,87%
repair 44 of 45 97,78% 6,00% 5,87%
skip 0 of 6 0,00% 0,80% 0,00%
survey 15 of 15 100,00% 2,00% 2,00%

not used buy
goto 301 of 301 100,00% 40,13% 40,13%
parry 16 of 40 40,00% 5,33% 2,13%
recharge 331 of 332 99,70% 44,27% 44,13%
repair 59 of 59 100,00% 7,87% 7,87%
skip 0 of 6 0,00% 0,80% 0,00%
survey 12 of 12 100,00% 1,60% 1,60%

Table 19: HactarV2 vs. Simurgh – HactarV2 Repairer.
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Status Action Frequency Success Overall O. Success
attack 198 of 316 62,66% 42,13% 26,40%
buy 7 of 7 100,00% 0,93% 0,93%
goto 196 of 196 100,00% 26,13% 26,13%

not used parry
recharge 214 of 223 95,96% 29,73% 28,53%
skip 0 of 6 0,00% 0,80% 0,00%
survey 2 of 2 100,00% 0,27% 0,27%
attack 167 of 282 59,22% 37,60% 22,27%
buy 7 of 7 100,00% 0,93% 0,93%
goto 223 of 223 100,00% 29,73% 29,73%

not used parry
recharge 221 of 230 96,09% 30,67% 29,47%
skip 0 of 7 0,00% 0,93% 0,00%
survey 1 of 1 100,00% 0,13% 0,13%

Table 20: HactarV2 vs. Simurgh – HactarV2 Saboteur.

Status Action Frequency Success Overall O. Success
not used buy

goto 322 of 322 100,00% 42,93% 42,93%
parry 14 of 28 50,00% 3,73% 1,87%
recharge 370 of 372 99,46% 49,60% 49,33%
skip 0 of 9 0,00% 1,20% 0,00%
survey 19 of 19 100,00% 2,53% 2,53%

not used buy
goto 319 of 319 100,00% 42,53% 42,53%
parry 30 of 40 75,00% 5,33% 4,00%
recharge 367 of 368 99,73% 49,07% 48,93%
skip 0 of 6 0,00% 0,80% 0,00%
survey 17 of 17 100,00% 2,27% 2,27%

Table 21: HactarV2 vs. Simurgh – HactarV2 Sentinel.
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Status Action Frequency Success Overall O. Success
not used buy

goto 351 of 351 100,00% 46,80% 46,80%
inspect 44 of 44 100,00% 5,87% 5,87%
recharge 338 of 339 99,71% 45,20% 45,07%
skip 0 of 4 0,00% 0,53% 0,00%
survey 12 of 12 100,00% 1,60% 1,60%

not used buy
goto 355 of 355 100,00% 47,33% 47,33%
inspect 40 of 41 97,56% 5,47% 5,33%
recharge 332 of 335 99,10% 44,67% 44,27%
skip 0 of 9 0,00% 1,20% 0,00%
survey 10 of 10 100,00% 1,33% 1,33%

Table 22: HactarV2 vs. Simurgh – HactarV2 Inspector.

Status Action Frequency Success Overall O. Success
not used buy

goto 284 of 418 67,94% 55,73% 37,87%
not allowed parry 0 of 20 0,00% 2,67% 0,00%

probe 91 of 91 100,00% 12,13% 12,13%
recharge 128 of 129 99,22% 17,20% 17,07%
skip 52 of 65 80,00% 8,67% 6,93%
survey 27 of 27 100,00% 3,60% 3,60%

not used buy
goto 293 of 424 69,10% 56,53% 39,07%

not allowed parry 0 of 14 0,00% 1,87% 0,00%
probe 81 of 81 100,00% 10,80% 10,80%
recharge 131 of 134 97,76% 17,87% 17,47%
skip 64 of 67 95,52% 8,93% 8,53%
survey 30 of 30 100,00% 4,00% 4,00%

Table 23: HactarV2 vs. Simurgh – Simurgh Explorer.
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Status Action Frequency Success Overall O. Success
not used buy

goto 120 of 134 89,55% 17,87% 16,00%
parry 36 of 61 59,02% 8,13% 4,80%
recharge 246 of 262 93,89% 34,93% 32,80%
repair 162 of 255 63,53% 34,00% 21,60%
skip 32 of 35 91,43% 4,67% 4,27%
survey 3 of 3 100,00% 0,40% 0,40%

not used buy
goto 112 of 132 84,85% 17,60% 14,93%
parry 84 of 102 82,35% 13,60% 11,20%
recharge 230 of 252 91,27% 33,60% 30,67%
repair 160 of 226 70,80% 30,13% 21,33%
skip 29 of 35 82,86% 4,67% 3,87%
survey 3 of 3 100,00% 0,40% 0,40%

Table 24: HactarV2 vs. Simurgh – Simurgh Repairer.

Status Action Frequency Success Overall O. Success
attack 89 of 125 71,20% 16,67% 11,87%
buy 5 of 13 38,46% 1,73% 0,67%
goto 84 of 96 87,50% 12,80% 11,20%

not used parry
recharge 111 of 121 91,74% 16,13% 14,80%
skip 383 of 393 97,46% 52,40% 51,07%
survey 2 of 2 100,00% 0,27% 0,27%
attack 93 of 133 69,92% 17,73% 12,40%
buy 5 of 9 55,56% 1,20% 0,67%
goto 99 of 113 87,61% 15,07% 13,20%

not used parry
recharge 128 of 134 95,52% 17,87% 17,07%
skip 353 of 359 98,33% 47,87% 47,07%
survey 2 of 2 100,00% 0,27% 0,27%

Table 25: HactarV2 vs. Simurgh – Simurgh Saboteur.
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Status Action Frequency Success Overall O. Success
not used buy

goto 259 of 305 84,92% 40,67% 34,53%
parry 37 of 65 56,92% 8,67% 4,93%
recharge 258 of 264 97,73% 35,20% 34,40%
skip 86 of 100 86,00% 13,33% 11,47%
survey 8 of 16 50,00% 2,13% 1,07%

not used buy
goto 260 of 324 80,25% 43,20% 34,67%
parry 20 of 39 51,28% 5,20% 2,67%
recharge 319 of 322 99,07% 42,93% 42,53%
skip 38 of 48 79,17% 6,40% 5,07%
survey 17 of 17 100,00% 2,27% 2,27%

Table 26: HactarV2 vs. Simurgh – Simurgh Sentinel.

Status Action Frequency Success Overall O. Success
not used buy

goto 263 of 316 83,23% 42,13% 35,07%
inspect 4 of 4 100,00% 0,53% 0,53%

not allowed parry 0 of 11 0,00% 1,47% 0,00%
recharge 347 of 347 100,00% 46,27% 46,27%
skip 56 of 64 87,50% 8,53% 7,47%
survey 8 of 8 100,00% 1,07% 1,07%

not used buy
goto 259 of 288 89,93% 38,40% 34,53%
inspect 4 of 4 100,00% 0,53% 0,53%

not allowed parry 0 of 34 0,00% 4,53% 0,00%
recharge 270 of 273 98,90% 36,40% 36,00%
skip 134 of 143 93,71% 19,07% 17,87%
survey 8 of 8 100,00% 1,07% 1,07%

Table 27: HactarV2 vs. Simurgh – Simurgh Inspector.
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not used buy

goto 149 of 149 100,00% 19,87% 19,87%
probe 72 of 72 100,00% 9,60% 9,60%
recharge 513 of 513 100,00% 68,40% 68,40%
skip 0 of 8 0,00% 1,07% 0,00%
survey 8 of 8 100,00% 1,07% 1,07%

not used buy
goto 154 of 154 100,00% 20,53% 20,53%
probe 66 of 66 100,00% 8,80% 8,80%
recharge 507 of 509 99,61% 67,87% 67,60%
skip 3 of 15 20,00% 2,00% 0,40%
survey 6 of 6 100,00% 0,80% 0,80%

Table 28: HactarV2 vs. UCDBogtrotters – HactarV2 Explorer.

Status Action Frequency Success Overall O. Success
not used buy

goto 219 of 219 100,00% 29,20% 29,20%
not used parry

recharge 499 of 499 100,00% 66,53% 66,53%
repair 17 of 17 100,00% 2,27% 2,27%
skip 0 of 2 0,00% 0,27% 0,00%
survey 13 of 13 100,00% 1,73% 1,73%

not used buy
goto 201 of 201 100,00% 26,80% 26,80%
parry 6 of 13 46,15% 1,73% 0,80%
recharge 457 of 461 99,13% 61,47% 60,93%
repair 47 of 47 100,00% 6,27% 6,27%
skip 3 of 7 42,86% 0,93% 0,40%
survey 21 of 21 100,00% 2,80% 2,80%

Table 29: HactarV2 vs. UCDBogtrotters – HactarV2 Repairer.
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Status Action Frequency Success Overall O. Success
attack 96 of 96 100,00% 12,80% 12,80%
buy 12 of 12 100,00% 1,60% 1,60%
goto 219 of 219 100,00% 29,20% 29,20%

not used parry
recharge 408 of 414 98,55% 55,20% 54,40%
skip 2 of 7 28,57% 0,93% 0,27%
survey 2 of 2 100,00% 0,27% 0,27%
attack 78 of 78 100,00% 10,40% 10,40%
buy 12 of 12 100,00% 1,60% 1,60%
goto 239 of 239 100,00% 31,87% 31,87%

not used parry
recharge 404 of 409 98,78% 54,53% 53,87%
skip 2 of 10 20,00% 1,33% 0,27%
survey 2 of 2 100,00% 0,27% 0,27%

Table 30: HactarV2 vs. UCDBogtrotters – HactarV2 Saboteur.

Status Action Frequency Success Overall O. Success
not used buy

goto 179 of 179 100,00% 23,87% 23,87%
parry 5 of 6 83,33% 0,80% 0,67%
recharge 531 of 532 99,81% 70,93% 70,80%
skip 1 of 8 12,50% 1,07% 0,13%
survey 25 of 25 100,00% 3,33% 3,33%

not used buy
goto 189 of 189 100,00% 25,20% 25,20%
parry 1 of 2 50,00% 0,27% 0,13%
recharge 528 of 528 100,00% 70,40% 70,40%
skip 4 of 12 33,33% 1,60% 0,53%
survey 19 of 19 100,00% 2,53% 2,53%

Table 31: HactarV2 vs. UCDBogtrotters – HactarV2 Sentinel.
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not used buy

goto 235 of 235 100,00% 31,33% 31,33%
inspect 26 of 28 92,86% 3,73% 3,47%
recharge 467 of 467 100,00% 62,27% 62,27%
skip 4 of 12 33,33% 1,60% 0,53%
survey 8 of 8 100,00% 1,07% 1,07%

not used buy
goto 208 of 208 100,00% 27,73% 27,73%
inspect 31 of 31 100,00% 4,13% 4,13%
recharge 482 of 485 99,38% 64,67% 64,27%
skip 1 of 9 11,11% 1,20% 0,13%
survey 17 of 17 100,00% 2,27% 2,27%

Table 32: HactarV2 vs. UCDBogtrotters – HactarV2 Inspector.

Status Action Frequency Success Overall O. Success
not used buy

goto 84 of 84 100,00% 11,20% 11,20%
probe 9 of 160 5,62% 21,33% 1,20%
recharge 67 of 67 100,00% 8,93% 8,93%
skip 372 of 378 98,41% 50,40% 49,60%
survey 52 of 61 85,25% 8,13% 6,93%

not used buy
goto 46 of 46 100,00% 6,13% 6,13%
probe 12 of 133 9,02% 17,73% 1,60%
recharge 46 of 46 100,00% 6,13% 6,13%
skip 490 of 496 98,79% 66,13% 65,33%
survey 20 of 29 68,97% 3,87% 2,67%

Table 33: HactarV2 vs. UCDBogtrotters – UCDBogtrotters Explorer.
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Status Action Frequency Success Overall O. Success
buy 1 of 18 5,56% 2,40% 0,13%
goto 20 of 20 100,00% 2,67% 2,67%

not used parry
recharge 117 of 119 98,32% 15,87% 15,60%
repair 70 of 94 74,47% 12,53% 9,33%
skip 483 of 492 98,17% 65,60% 64,40%
survey 4 of 7 57,14% 0,93% 0,53%
buy 0 of 4 0,00% 0,53% 0,00%
goto 47 of 47 100,00% 6,27% 6,27%

not used parry
recharge 269 of 271 99,26% 36,13% 35,87%
repair 81 of 250 32,40% 33,33% 10,80%
skip 155 of 167 92,81% 22,27% 20,67%
survey 4 of 11 36,36% 1,47% 0,53%

Table 34: HactarV2 vs. UCDBogtrotters – UCDBogtrotters Repairer.

Status Action Frequency Success Overall O. Success
attack 62 of 245 25,31% 32,67% 8,27%
buy 12 of 35 34,29% 4,67% 1,60%
goto 4 of 4 100,00% 0,53% 0,53%
parry 0 of 7 0,00% 0,93% 0,00%
recharge 112 of 121 92,56% 16,13% 14,93%
skip 326 of 335 97,31% 44,67% 43,47%
survey 2 of 3 66,67% 0,40% 0,27%
attack 57 of 269 21,19% 35,87% 7,60%
buy 0 of 7 0,00% 0,93% 0,00%
goto 26 of 29 89,66% 3,87% 3,47%
parry 0 of 102 0,00% 13,60% 0,00%
recharge 186 of 186 100,00% 24,80% 24,80%
skip 128 of 137 93,43% 18,27% 17,07%
survey 16 of 20 80,00% 2,67% 2,13%

Table 35: HactarV2 vs. UCDBogtrotters – UCDBogtrotters Saboteur.
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Status Action Frequency Success Overall O. Success
buy 1 of 34 2,94% 4,53% 0,13%
goto 41 of 41 100,00% 5,47% 5,47%

not used parry
recharge 53 of 53 100,00% 7,07% 7,07%
skip 595 of 600 99,17% 80,00% 79,33%
survey 3 of 22 13,64% 2,93% 0,40%
buy 0 of 9 0,00% 1,20% 0,00%
goto 43 of 44 97,73% 5,87% 5,73%

not used parry
recharge 38 of 38 100,00% 5,07% 5,07%
skip 618 of 627 98,56% 83,60% 82,40%
survey 13 of 32 40,62% 4,27% 1,73%

Table 36: HactarV2 vs. UCDBogtrotters – UCDBogtrotters Sentinel.

Status Action Frequency Success Overall O. Success
not used buy

goto 24 of 24 100,00% 3,20% 3,20%
not used inspect

recharge 28 of 30 93,33% 4,00% 3,73%
skip 673 of 680 98,97% 90,67% 89,73%
survey 8 of 16 50,00% 2,13% 1,07%

not used buy
goto 51 of 52 98,08% 6,93% 6,80%

not used inspect
recharge 49 of 49 100,00% 6,53% 6,53%
skip 617 of 620 99,52% 82,67% 82,27%
survey 11 of 29 37,93% 3,87% 1,47%

Table 37: HactarV2 vs. UCDBogtrotters – UCDBogtrotters Inspector.

DEPARTMENTOF INFORMATICS 50



MAPC 2011 EVALUATION AND TEAMDESCRIPTIONS

Status Action Frequency Success Overall O. Success
not used buy

goto 56 of 56 100,00% 7,47% 7,47%
probe 25 of 25 100,00% 3,33% 3,33%
recharge 652 of 655 99,54% 87,33% 86,93%
skip 1 of 14 7,14% 1,87% 0,13%

not used survey
not used buy

goto 102 of 102 100,00% 13,60% 13,60%
probe 32 of 32 100,00% 4,27% 4,27%
recharge 599 of 605 99,01% 80,67% 79,87%
skip 2 of 11 18,18% 1,47% 0,27%

not used survey

Table 38: Python-DTU vs. UCDBogtrotters – Python-DTU Explorer.

Status Action Frequency Success Overall O. Success
not used buy

goto 93 of 93 100,00% 12,40% 12,40%
not used parry

recharge 501 of 510 98,24% 68,00% 66,80%
repair 131 of 131 100,00% 17,47% 17,47%
skip 1 of 9 11,11% 1,20% 0,13%
survey 7 of 7 100,00% 0,93% 0,93%

not used buy
goto 86 of 86 100,00% 11,47% 11,47%

not used parry
recharge 502 of 503 99,80% 67,07% 66,93%
repair 149 of 149 100,00% 19,87% 19,87%
skip 1 of 4 25,00% 0,53% 0,13%
survey 8 of 8 100,00% 1,07% 1,07%

Table 39: Python-DTU vs. UCDBogtrotters – Python-DTU Repairer.
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attack 181 of 393 46,06% 52,40% 24,13%
buy 7 of 7 100,00% 0,93% 0,93%
goto 104 of 104 100,00% 13,87% 13,87%

not used parry
recharge 236 of 241 97,93% 32,13% 31,47%
skip 1 of 5 20,00% 0,67% 0,13%

not used survey
attack 166 of 383 43,34% 51,07% 22,13%
buy 7 of 7 100,00% 0,93% 0,93%
goto 120 of 120 100,00% 16,00% 16,00%

not used parry
recharge 227 of 230 98,70% 30,67% 30,27%
skip 1 of 10 10,00% 1,33% 0,13%

not used survey

Table 40: Python-DTU vs. UCDBogtrotters – Python-DTU Saboteur.

Status Action Frequency Success Overall O. Success
not used buy

goto 64 of 64 100,00% 8,53% 8,53%
parry 45 of 65 69,23% 8,67% 6,00%
recharge 591 of 592 99,83% 78,93% 78,80%
skip 1 of 6 16,67% 0,80% 0,13%
survey 22 of 23 95,65% 3,07% 2,93%

not used buy
goto 47 of 47 100,00% 6,27% 6,27%
parry 9 of 12 75,00% 1,60% 1,20%
recharge 655 of 655 100,00% 87,33% 87,33%
skip 1 of 7 14,29% 0,93% 0,13%
survey 29 of 29 100,00% 3,87% 3,87%

Table 41: Python-DTU vs. UCDBogtrotters – Python-DTU Sentinel.
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Status Action Frequency Success Overall O. Success
not used buy

goto 93 of 93 100,00% 12,40% 12,40%
inspect 5 of 5 100,00% 0,67% 0,67%
recharge 623 of 628 99,20% 83,73% 83,07%
skip 1 of 9 11,11% 1,20% 0,13%
survey 15 of 15 100,00% 2,00% 2,00%

not used buy
goto 74 of 74 100,00% 9,87% 9,87%
inspect 5 of 5 100,00% 0,67% 0,67%
recharge 638 of 642 99,38% 85,60% 85,07%
skip 1 of 6 16,67% 0,80% 0,13%
survey 23 of 23 100,00% 3,07% 3,07%

Table 42: Python-DTU vs. UCDBogtrotters – Python-DTU Inspector.

Status Action Frequency Success Overall O. Success
not used buy

goto 257 of 265 96,98% 35,33% 34,27%
not allowed parry 0 of 95 0,00% 12,67% 0,00%

probe 16 of 33 48,48% 4,40% 2,13%
recharge 329 of 330 99,70% 44,00% 43,87%
skip 15 of 21 71,43% 2,80% 2,00%
survey 6 of 6 100,00% 0,80% 0,80%

not used buy
goto 293 of 308 95,13% 41,07% 39,07%

not allowed parry 0 of 57 0,00% 7,60% 0,00%
probe 24 of 29 82,76% 3,87% 3,20%
recharge 325 of 326 99,69% 43,47% 43,33%
skip 17 of 23 73,91% 3,07% 2,27%
survey 6 of 7 85,71% 0,93% 0,80%

Table 43: Python-DTU vs. UCDBogtrotters – UCDBogtrotters Explorer.
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buy 1 of 3 33,33% 0,40% 0,13%
goto 31 of 31 100,00% 4,13% 4,13%
parry 114 of 186 61,29% 24,80% 15,20%
recharge 242 of 289 83,74% 38,53% 32,27%
repair 169 of 217 77,88% 28,93% 22,53%
skip 14 of 21 66,67% 2,80% 1,87%
survey 3 of 3 100,00% 0,40% 0,40%

not used buy
goto 9 of 9 100,00% 1,20% 1,20%
parry 103 of 284 36,27% 37,87% 13,73%
recharge 217 of 243 89,30% 32,40% 28,93%
repair 141 of 192 73,44% 25,60% 18,80%
skip 15 of 21 71,43% 2,80% 2,00%
survey 1 of 1 100,00% 0,13% 0,13%

Table 44: Python-DTU vs. UCDBogtrotters – UCDBogtrotters Repairer.

Status Action Frequency Success Overall O. Success
attack 119 of 155 76,77% 20,67% 15,87%
buy 12 of 17 70,59% 2,27% 1,60%
goto 298 of 298 100,00% 39,73% 39,73%

not used parry
recharge 253 of 258 98,06% 34,40% 33,73%
skip 15 of 22 68,18% 2,93% 2,00%

not used survey
attack 84 of 103 81,55% 13,73% 11,20%
buy 6 of 17 35,29% 2,27% 0,80%
goto 336 of 336 100,00% 44,80% 44,80%

not used parry
recharge 267 of 271 98,52% 36,13% 35,60%
skip 15 of 23 65,22% 3,07% 2,00%

not used survey

Table 45: Python-DTU vs. UCDBogtrotters – UCDBogtrotters Saboteur.
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Status Action Frequency Success Overall O. Success
buy 7 of 10 70,00% 1,33% 0,93%
goto 139 of 139 100,00% 18,53% 18,53%
parry 92 of 191 48,17% 25,47% 12,27%
recharge 356 of 367 97,00% 48,93% 47,47%
skip 16 of 24 66,67% 3,20% 2,13%
survey 19 of 19 100,00% 2,53% 2,53%

not used buy
goto 158 of 158 100,00% 21,07% 21,07%
parry 87 of 297 29,29% 39,60% 11,60%
recharge 254 of 266 95,49% 35,47% 33,87%
skip 15 of 23 65,22% 3,07% 2,00%
survey 5 of 6 83,33% 0,80% 0,67%

Table 46: Python-DTU vs. UCDBogtrotters – UCDBogtrotters Sentinel.

Status Action Frequency Success Overall O. Success
not used buy

goto 180 of 181 99,45% 24,13% 24,00%
inspect 12 of 12 100,00% 1,60% 1,60%

not allowed parry 0 of 194 0,00% 25,87% 0,00%
recharge 323 of 324 99,69% 43,20% 43,07%
skip 16 of 30 53,33% 4,00% 2,13%
survey 9 of 9 100,00% 1,20% 1,20%

not used buy
goto 304 of 304 100,00% 40,53% 40,53%
inspect 4 of 17 23,53% 2,27% 0,53%

not allowed parry 0 of 49 0,00% 6,53% 0,00%
recharge 349 of 349 100,00% 46,53% 46,53%
skip 19 of 29 65,52% 3,87% 2,53%
survey 2 of 2 100,00% 0,27% 0,27%

Table 47: Python-DTU vs. UCDBogtrotters – UCDBogtrotters Inspector.
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not used buy

goto 257 of 257 100,00% 34,27% 34,27%
probe 38 of 38 100,00% 5,07% 5,07%
recharge 439 of 439 100,00% 58,53% 58,53%
skip 0 of 7 0,00% 0,93% 0,00%
survey 9 of 9 100,00% 1,20% 1,20%

not used buy
goto 291 of 291 100,00% 38,80% 38,80%
probe 30 of 30 100,00% 4,00% 4,00%
recharge 402 of 403 99,75% 53,73% 53,60%
skip 0 of 7 0,00% 0,93% 0,00%
survey 19 of 19 100,00% 2,53% 2,53%

Table 48: HactarV2 vs. TUB – HactarV2 Explorer.

Status Action Frequency Success Overall O. Success
not used buy

goto 196 of 196 100,00% 26,13% 26,13%
parry 39 of 133 29,32% 17,73% 5,20%
recharge 229 of 253 90,51% 33,73% 30,53%
repair 147 of 151 97,35% 20,13% 19,60%
skip 0 of 6 0,00% 0,80% 0,00%
survey 11 of 11 100,00% 1,47% 1,47%

not used buy
goto 210 of 210 100,00% 28,00% 28,00%
parry 19 of 132 14,39% 17,60% 2,53%
recharge 228 of 237 96,20% 31,60% 30,40%
repair 153 of 158 96,84% 21,07% 20,40%
skip 0 of 5 0,00% 0,67% 0,00%
survey 8 of 8 100,00% 1,07% 1,07%

Table 49: HactarV2 vs. TUB – HactarV2 Repairer.
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Status Action Frequency Success Overall O. Success
attack 329 of 329 100,00% 43,87% 43,87%
buy 13 of 13 100,00% 1,73% 1,73%
goto 178 of 178 100,00% 23,73% 23,73%

not used parry
recharge 208 of 221 94,12% 29,47% 27,73%
skip 0 of 8 0,00% 1,07% 0,00%
survey 1 of 1 100,00% 0,13% 0,13%
attack 307 of 307 100,00% 40,93% 40,93%
buy 13 of 13 100,00% 1,73% 1,73%
goto 171 of 171 100,00% 22,80% 22,80%

not used parry
recharge 240 of 249 96,39% 33,20% 32,00%
skip 0 of 7 0,00% 0,93% 0,00%
survey 3 of 3 100,00% 0,40% 0,40%

Table 50: HactarV2 vs. TUB – HactarV2 Saboteur.

Status Action Frequency Success Overall O. Success
not used buy

goto 264 of 264 100,00% 35,20% 35,20%
parry 54 of 99 54,55% 13,20% 7,20%
recharge 354 of 361 98,06% 48,13% 47,20%
skip 0 of 8 0,00% 1,07% 0,00%
survey 18 of 18 100,00% 2,40% 2,40%

not used buy
goto 272 of 272 100,00% 36,27% 36,27%
parry 50 of 86 58,14% 11,47% 6,67%
recharge 370 of 378 97,88% 50,40% 49,33%
skip 0 of 7 0,00% 0,93% 0,00%
survey 7 of 7 100,00% 0,93% 0,93%

Table 51: HactarV2 vs. TUB – HactarV2 Sentinel.
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not used buy

goto 299 of 299 100,00% 39,87% 39,87%
inspect 5 of 5 100,00% 0,67% 0,67%
recharge 425 of 427 99,53% 56,93% 56,67%
skip 0 of 6 0,00% 0,80% 0,00%
survey 13 of 13 100,00% 1,73% 1,73%

not used buy
goto 330 of 330 100,00% 44,00% 44,00%
inspect 31 of 32 96,88% 4,27% 4,13%
recharge 368 of 371 99,19% 49,47% 49,07%
skip 0 of 9 0,00% 1,20% 0,00%
survey 8 of 8 100,00% 1,07% 1,07%

Table 52: HactarV2 vs. TUB – HactarV2 Inspector.

Status Action Frequency Success Overall O. Success
not used buy

goto 369 of 370 99,73% 49,33% 49,20%
probe 55 of 57 96,49% 7,60% 7,33%
recharge 277 of 279 99,28% 37,20% 36,93%
skip 0 of 8 0,00% 1,07% 0,00%
survey 36 of 36 100,00% 4,80% 4,80%

not used buy
goto 374 of 374 100,00% 49,87% 49,87%
probe 61 of 61 100,00% 8,13% 8,13%
recharge 261 of 263 99,24% 35,07% 34,80%
skip 0 of 7 0,00% 0,93% 0,00%
survey 45 of 45 100,00% 6,00% 6,00%

Table 53: HactarV2 vs. TUB – TUB Explorer.
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not used buy

goto 209 of 209 100,00% 27,87% 27,87%
not used parry

recharge 268 of 279 96,06% 37,20% 35,73%
repair 250 of 250 100,00% 33,33% 33,33%
skip 0 of 10 0,00% 1,33% 0,00%
survey 2 of 2 100,00% 0,27% 0,27%

not used buy
goto 155 of 155 100,00% 20,67% 20,67%

not used parry
recharge 269 of 278 96,76% 37,07% 35,87%
repair 306 of 308 99,35% 41,07% 40,80%
skip 0 of 8 0,00% 1,07% 0,00%
survey 1 of 1 100,00% 0,13% 0,13%

Table 54: HactarV2 vs. TUB – TUB Repairer.

Status Action Frequency Success Overall O. Success
attack 165 of 249 66,27% 33,20% 22,00%
buy 12 of 12 100,00% 1,60% 1,60%
goto 190 of 190 100,00% 25,33% 25,33%

not used parry
recharge 273 of 284 96,13% 37,87% 36,40%
skip 0 of 14 0,00% 1,87% 0,00%
survey 1 of 1 100,00% 0,13% 0,13%
attack 252 of 330 76,36% 44,00% 33,60%
buy 10 of 10 100,00% 1,33% 1,33%
goto 124 of 124 100,00% 16,53% 16,53%

not used parry
recharge 272 of 275 98,91% 36,67% 36,27%
skip 0 of 10 0,00% 1,33% 0,00%
survey 1 of 1 100,00% 0,13% 0,13%

Table 55: HactarV2 vs. TUB – TUB Saboteur.
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not used buy

goto 401 of 401 100,00% 53,47% 53,47%
not used parry

recharge 335 of 337 99,41% 44,93% 44,67%
skip 0 of 7 0,00% 0,93% 0,00%
survey 5 of 5 100,00% 0,67% 0,67%

not used buy
goto 393 of 393 100,00% 52,40% 52,40%

not used parry
recharge 337 of 340 99,12% 45,33% 44,93%
skip 0 of 10 0,00% 1,33% 0,00%
survey 7 of 7 100,00% 0,93% 0,93%

Table 56: HactarV2 vs. TUB – TUB Sentinel.

Status Action Frequency Success Overall O. Success
not used buy

goto 395 of 395 100,00% 52,67% 52,67%
inspect 2 of 2 100,00% 0,27% 0,27%
recharge 340 of 342 99,42% 45,60% 45,33%
skip 0 of 6 0,00% 0,80% 0,00%
survey 5 of 5 100,00% 0,67% 0,67%

not used buy
goto 418 of 418 100,00% 55,73% 55,73%
inspect 6 of 6 100,00% 0,80% 0,80%
recharge 311 of 315 98,73% 42,00% 41,47%
skip 0 of 9 0,00% 1,20% 0,00%
survey 2 of 2 100,00% 0,27% 0,27%

Table 57: HactarV2 vs. TUB – TUB Inspector.
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not used buy

goto 105 of 105 100,00% 14,00% 14,00%
probe 32 of 32 100,00% 4,27% 4,27%
recharge 599 of 601 99,67% 80,13% 79,87%
skip 0 of 10 0,00% 1,33% 0,00%
survey 2 of 2 100,00% 0,27% 0,27%

not used buy
goto 43 of 43 100,00% 5,73% 5,73%
probe 25 of 25 100,00% 3,33% 3,33%
recharge 672 of 674 99,70% 89,87% 89,60%
skip 0 of 8 0,00% 1,07% 0,00%

not used survey

Table 58: Python-DTU vs. TUB – Python-DTU Explorer.

Status Action Frequency Success Overall O. Success
not used buy

goto 106 of 106 100,00% 14,13% 14,13%
not used parry

recharge 304 of 311 97,75% 41,47% 40,53%
repair 311 of 320 97,19% 42,67% 41,47%
skip 0 of 8 0,00% 1,07% 0,00%
survey 5 of 5 100,00% 0,67% 0,67%

not used buy
goto 119 of 119 100,00% 15,87% 15,87%

not used parry
recharge 308 of 330 93,33% 44,00% 41,07%
repair 279 of 286 97,55% 38,13% 37,20%
skip 0 of 10 0,00% 1,33% 0,00%
survey 5 of 5 100,00% 0,67% 0,67%

Table 59: Python-DTU vs. TUB – Python-DTU Repairer.
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attack 214 of 215 99,53% 28,67% 28,53%
buy 7 of 7 100,00% 0,93% 0,93%
goto 228 of 228 100,00% 30,40% 30,40%

not used parry
recharge 267 of 294 90,82% 39,20% 35,60%
skip 0 of 6 0,00% 0,80% 0,00%

not used survey
attack 243 of 243 100,00% 32,40% 32,40%
buy 7 of 7 100,00% 0,93% 0,93%
goto 159 of 159 100,00% 21,20% 21,20%

not used parry
recharge 238 of 333 71,47% 44,40% 31,73%
skip 0 of 8 0,00% 1,07% 0,00%

not used survey

Table 60: Python-DTU vs. TUB – Python-DTU Saboteur.

Status Action Frequency Success Overall O. Success
not used buy

goto 98 of 98 100,00% 13,07% 13,07%
parry 1 of 5 20,00% 0,67% 0,13%
recharge 607 of 607 100,00% 80,93% 80,93%
skip 0 of 8 0,00% 1,07% 0,00%
survey 32 of 32 100,00% 4,27% 4,27%

not used buy
goto 101 of 101 100,00% 13,47% 13,47%
parry 8 of 18 44,44% 2,40% 1,07%
recharge 595 of 596 99,83% 79,47% 79,33%
skip 0 of 7 0,00% 0,93% 0,00%
survey 28 of 28 100,00% 3,73% 3,73%

Table 61: Python-DTU vs. TUB – Python-DTU Sentinel.
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not used buy

goto 84 of 84 100,00% 11,20% 11,20%
not used inspect

recharge 649 of 652 99,54% 86,93% 86,53%
skip 0 of 10 0,00% 1,33% 0,00%
survey 4 of 4 100,00% 0,53% 0,53%

not used buy
goto 102 of 102 100,00% 13,60% 13,60%

not used inspect
recharge 632 of 636 99,37% 84,80% 84,27%
skip 0 of 6 0,00% 0,80% 0,00%
survey 6 of 6 100,00% 0,80% 0,80%

Table 62: Python-DTU vs. TUB – Python-DTU Inspector.

Status Action Frequency Success Overall O. Success
not used buy

goto 407 of 407 100,00% 54,27% 54,27%
probe 48 of 48 100,00% 6,40% 6,40%
recharge 251 of 254 98,82% 33,87% 33,47%
skip 0 of 7 0,00% 0,93% 0,00%
survey 34 of 34 100,00% 4,53% 4,53%

not used buy
goto 391 of 391 100,00% 52,13% 52,13%
probe 51 of 51 100,00% 6,80% 6,80%
recharge 255 of 260 98,08% 34,67% 34,00%
skip 0 of 12 0,00% 1,60% 0,00%
survey 36 of 36 100,00% 4,80% 4,80%

Table 63: Python-DTU vs. TUB – TUB Explorer.
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not used buy

goto 229 of 229 100,00% 30,53% 30,53%
not used parry

recharge 207 of 214 96,73% 28,53% 27,60%
repair 295 of 297 99,33% 39,60% 39,33%
skip 0 of 8 0,00% 1,07% 0,00%
survey 2 of 2 100,00% 0,27% 0,27%

not used buy
goto 207 of 207 100,00% 27,60% 27,60%

not used parry
recharge 197 of 199 98,99% 26,53% 26,27%
repair 325 of 332 97,89% 44,27% 43,33%
skip 0 of 8 0,00% 1,07% 0,00%
survey 4 of 4 100,00% 0,53% 0,53%

Table 64: Python-DTU vs. TUB – TUB Repairer.

Status Action Frequency Success Overall O. Success
attack 308 of 313 98,40% 41,73% 41,07%
buy 4 of 4 100,00% 0,53% 0,53%
goto 159 of 159 100,00% 21,20% 21,20%

not used parry
recharge 261 of 262 99,62% 34,93% 34,80%
skip 0 of 11 0,00% 1,47% 0,00%
survey 1 of 1 100,00% 0,13% 0,13%
attack 370 of 374 98,93% 49,87% 49,33%
buy 4 of 4 100,00% 0,53% 0,53%
goto 93 of 93 100,00% 12,40% 12,40%

not used parry
recharge 270 of 271 99,63% 36,13% 36,00%
skip 0 of 7 0,00% 0,93% 0,00%
survey 1 of 1 100,00% 0,13% 0,13%

Table 65: Python-DTU vs. TUB – TUB Saboteur.
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not used buy

goto 404 of 404 100,00% 53,87% 53,87%
not used parry

recharge 330 of 331 99,70% 44,13% 44,00%
skip 0 of 8 0,00% 1,07% 0,00%
survey 7 of 7 100,00% 0,93% 0,93%

not used buy
goto 385 of 385 100,00% 51,33% 51,33%

not used parry
recharge 349 of 354 98,59% 47,20% 46,53%
skip 0 of 7 0,00% 0,93% 0,00%
survey 4 of 4 100,00% 0,53% 0,53%

Table 66: Python-DTU vs. TUB – TUB Sentinel.

Status Action Frequency Success Overall O. Success
not used buy

goto 406 of 406 100,00% 54,13% 54,13%
inspect 2 of 2 100,00% 0,27% 0,27%
recharge 328 of 333 98,50% 44,40% 43,73%
skip 0 of 8 0,00% 1,07% 0,00%
survey 1 of 1 100,00% 0,13% 0,13%

not used buy
goto 380 of 380 100,00% 50,67% 50,67%
inspect 10 of 10 100,00% 1,33% 1,33%
recharge 348 of 351 99,15% 46,80% 46,40%
skip 0 of 5 0,00% 0,67% 0,00%
survey 4 of 4 100,00% 0,53% 0,53%

Table 67: Python-DTU vs. TUB – TUB Inspector.
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not used buy

goto 412 of 413 99,76% 55,07% 54,93%
probe 42 of 44 95,45% 5,87% 5,60%
recharge 259 of 260 99,62% 34,67% 34,53%
skip 0 of 3 0,00% 0,40% 0,00%
survey 30 of 30 100,00% 4,00% 4,00%

not used buy
goto 392 of 392 100,00% 52,27% 52,27%
probe 60 of 61 98,36% 8,13% 8,00%
recharge 250 of 250 100,00% 33,33% 33,33%
skip 0 of 7 0,00% 0,93% 0,00%
survey 39 of 40 97,50% 5,33% 5,20%

Table 68: TUB vs. UCDBogtrotters – TUB Explorer.

Status Action Frequency Success Overall O. Success
not used buy

goto 359 of 359 100,00% 47,87% 47,87%
not used parry

recharge 271 of 279 97,13% 37,20% 36,13%
repair 99 of 99 100,00% 13,20% 13,20%
skip 0 of 8 0,00% 1,07% 0,00%
survey 5 of 5 100,00% 0,67% 0,67%

not used buy
goto 333 of 333 100,00% 44,40% 44,40%

not used parry
recharge 265 of 270 98,15% 36,00% 35,33%
repair 137 of 137 100,00% 18,27% 18,27%
skip 0 of 9 0,00% 1,20% 0,00%
survey 1 of 1 100,00% 0,13% 0,13%

Table 69: TUB vs. UCDBogtrotters – TUB Repairer.
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attack 137 of 265 51,70% 35,33% 18,27%
buy 11 of 11 100,00% 1,47% 1,47%
goto 200 of 200 100,00% 26,67% 26,67%

not used parry
recharge 260 of 266 97,74% 35,47% 34,67%
skip 0 of 7 0,00% 0,93% 0,00%
survey 1 of 1 100,00% 0,13% 0,13%
attack 221 of 306 72,22% 40,80% 29,47%
buy 12 of 12 100,00% 1,60% 1,60%
goto 139 of 139 100,00% 18,53% 18,53%

not used parry
recharge 272 of 283 96,11% 37,73% 36,27%
skip 0 of 9 0,00% 1,20% 0,00%
survey 1 of 1 100,00% 0,13% 0,13%

Table 70: TUB vs. UCDBogtrotters – TUB Saboteur.

Status Action Frequency Success Overall O. Success
not used buy

goto 422 of 422 100,00% 56,27% 56,27%
not used parry

recharge 314 of 316 99,37% 42,13% 41,87%
skip 0 of 6 0,00% 0,80% 0,00%
survey 6 of 6 100,00% 0,80% 0,80%

not used buy
goto 438 of 438 100,00% 58,40% 58,40%

not used parry
recharge 298 of 300 99,33% 40,00% 39,73%
skip 0 of 5 0,00% 0,67% 0,00%
survey 7 of 7 100,00% 0,93% 0,93%

Table 71: TUB vs. UCDBogtrotters – TUB Sentinel.
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not used buy

goto 433 of 433 100,00% 57,73% 57,73%
inspect 3 of 3 100,00% 0,40% 0,40%
recharge 299 of 300 99,67% 40,00% 39,87%
skip 0 of 12 0,00% 1,60% 0,00%
survey 2 of 2 100,00% 0,27% 0,27%

not used buy
goto 427 of 427 100,00% 56,93% 56,93%
inspect 7 of 8 87,50% 1,07% 0,93%
recharge 306 of 306 100,00% 40,80% 40,80%
skip 0 of 7 0,00% 0,93% 0,00%
survey 2 of 2 100,00% 0,27% 0,27%

Table 72: TUB vs. UCDBogtrotters – TUB Inspector.

Status Action Frequency Success Overall O. Success
not used buy

goto 229 of 229 100,00% 30,53% 30,53%
not allowed parry 0 of 40 0,00% 5,33% 0,00%

probe 23 of 23 100,00% 3,07% 3,07%
recharge 431 of 433 99,54% 57,73% 57,47%
skip 4 of 10 40,00% 1,33% 0,53%
survey 15 of 15 100,00% 2,00% 2,00%

not used buy
goto 153 of 153 100,00% 20,40% 20,40%

not allowed parry 0 of 121 0,00% 16,13% 0,00%
probe 12 of 13 92,31% 1,73% 1,60%
recharge 441 of 441 100,00% 58,80% 58,80%
skip 4 of 12 33,33% 1,60% 0,53%
survey 10 of 10 100,00% 1,33% 1,33%

Table 73: TUB vs. UCDBogtrotters – UCDBogtrotters Explorer.
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not used buy

goto 153 of 153 100,00% 20,40% 20,40%
parry 34 of 73 46,58% 9,73% 4,53%
recharge 279 of 283 98,59% 37,73% 37,20%
repair 174 of 225 77,33% 30,00% 23,20%
skip 4 of 8 50,00% 1,07% 0,53%
survey 6 of 8 75,00% 1,07% 0,80%

not used buy
goto 83 of 83 100,00% 11,07% 11,07%
parry 14 of 69 20,29% 9,20% 1,87%
recharge 377 of 382 98,69% 50,93% 50,27%
repair 147 of 192 76,56% 25,60% 19,60%
skip 4 of 12 33,33% 1,60% 0,53%
survey 11 of 12 91,67% 1,60% 1,47%

Table 74: TUB vs. UCDBogtrotters – UCDBogtrotters Repairer.

Status Action Frequency Success Overall O. Success
attack 200 of 200 100,00% 26,67% 26,67%
buy 12 of 12 100,00% 1,60% 1,60%
goto 228 of 256 89,06% 34,13% 30,40%

not used parry
recharge 258 of 272 94,85% 36,27% 34,40%
skip 4 of 9 44,44% 1,20% 0,53%
survey 1 of 1 100,00% 0,13% 0,13%
attack 113 of 113 100,00% 15,07% 15,07%
buy 9 of 10 90,00% 1,33% 1,20%
goto 312 of 313 99,68% 41,73% 41,60%

not used parry
recharge 291 of 303 96,04% 40,40% 38,80%
skip 5 of 11 45,45% 1,47% 0,67%

not used survey

Table 75: TUB vs. UCDBogtrotters – UCDBogtrotters Saboteur.
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buy 5 of 6 83,33% 0,80% 0,67%
goto 57 of 57 100,00% 7,60% 7,60%
parry 100 of 148 67,57% 19,73% 13,33%
recharge 505 of 515 98,06% 68,67% 67,33%
skip 4 of 11 36,36% 1,47% 0,53%
survey 13 of 13 100,00% 1,73% 1,73%

not used buy
goto 56 of 56 100,00% 7,47% 7,47%
parry 65 of 95 68,42% 12,67% 8,67%
recharge 565 of 569 99,30% 75,87% 75,33%
skip 4 of 11 36,36% 1,47% 0,53%
survey 18 of 19 94,74% 2,53% 2,40%

Table 76: TUB vs. UCDBogtrotters – UCDBogtrotters Sentinel.

Status Action Frequency Success Overall O. Success
not used buy

goto 119 of 119 100,00% 15,87% 15,87%
inspect 24 of 24 100,00% 3,20% 3,20%

not allowed parry 0 of 19 0,00% 2,53% 0,00%
recharge 564 of 568 99,30% 75,73% 75,20%
skip 4 of 15 26,67% 2,00% 0,53%
survey 5 of 5 100,00% 0,67% 0,67%

not used buy
goto 93 of 93 100,00% 12,40% 12,40%
inspect 42 of 42 100,00% 5,60% 5,60%

not allowed parry 0 of 19 0,00% 2,53% 0,00%
recharge 578 of 578 100,00% 77,07% 77,07%
skip 4 of 12 33,33% 1,60% 0,53%
survey 6 of 6 100,00% 0,80% 0,80%

Table 77: TUB vs. UCDBogtrotters – UCDBogtrotters Inspector.
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Part II

In-Depth Team Descriptions
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Multi-Agent Programming Contest 2011
Techinical Report Template

[Authors]

[Affiliation]

Abstract. Please follow the given template structure for your submis-
sion. For each section, we are proposing some questions that the reader
of the paper should be able to answer after reading it. (Please note that
the technical report format is not like the “form” used in the registra-
tion template. A paper style should be used.)
If you encounter any problems with some of the questions please do
not hesitate to request clarification on the mailing list.
Max number of pages: 10
Deadline: 20/10/2011
Format: LNCS

http://www.springer.com/computer/lncs?SGWID=0-164-6-793341-0

Please submit your contribution via http://https://www.easychair.

org/conferences/?conf=mapc11 (menu TechReport).

1 Introduction

1. What was the motivation to participate in the contest?
2. What is the (brief) history of the team? (MAS course project, thesis eval-

uation, ....)
3. What is the name of your team?
4. How many developers and designers did you have? At what level of edu-

cation are your team members?
5. From which field of research do you come from? Which work is related?

2 SystemAnalysis andDesign

1. Did you use multi-agent programming languages? Please justify your an-
swer.

2. If some multi-agent system methodology such as Prometheus, O-MaSE,
or Tropos was used, how did you use it? If you did not, please justify.

3. Is the solution based on the centralisation of coordination/information
on a specific agent? Conversely if you plan a decentralised solution, which
strategy do you plan to use?

4. What is the communication strategy and how complex is it?
5. How are the following agent features considered/implemented: auton-
omy, proactiveness, reactiveness?
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6. Is the team a trulymulti-agent system or rather a centralised system in
disguise?

7. How much time (man hours) have you invested (approximately) for im-
plementing your team?

8. Did you discuss the design and strategies of you agent team with other
developers? To which extend did your test your agents playing with other
teams.

3 Software Architecture

1. Which programming language did you use to implement the multi-agent
system?

2. How have you mapped the designed architecture (both multi-agent and
individual agent architectures) to programming codes, i.e., how did you
implement specific agent-oriented concepts and designed artifacts using
the programming language?

3. Which development platforms and tools are used? How much time did
you invest in learning those?

4. Which runtime platforms and tools (e.g. Jade, AgentScape, simply Java,
....) are used? How much time did you invest in learning those?

5. What features were missing in your language choice that would have fa-
cilitated your development task?

6. Which algorithms are used/implemented?
7. How did you distribute the agents on several machines? And if you did

not please justify why.
8. To which extend is the reasoning of your agents synchronized with the

receive-percepts/send-action cycle?
9. What part of the development was most difficult/complex? What kind

of problems have you found and how are they solved?
10. How many lines of code did you write for your software?

4 Strategies, Details and Statistics

1. What is the main strategy of your team?
2. How does the overall team work together? (coordination, information

sharing, ...)
3. How do your agents analyze the topology of the map? And how do they

exploit their findings?
4. How do your agents communicate with the server?
5. How do you implement the roles of the agents? Which strategies do the

different roles implement?
6. How do you find good zones? How do you estimate the value of zones?
7. How do you conquer zones? How do you defend zones if attacked? Do

you attack zones?

73 Technical Report IfI-12-02



8. Can your agents change their behavior during runtime? If so, what trig-
gers the changes?

9. What algorithm(s) do you use for agent path planning?
10. How do you make use of the buying-mechanism?
11. How important are achievements for your overall strategy?
12. Do your agents have an explicit mental state?
13. How do your agents communicate? And what do they communicate?
14. How do you organize your agents? Do you use e.g. hierarchies? Is your

organization implicit or explicit?
15. Is most of you agents’ behavior emergent on and individual and team

level?
16. If you agents perform some planning, how many steps do they plan ahead.
17. If you have a perceive-think-act cycle, how is it synchronized with the

server?

5 Conclusion

1. What have you learned from the participation in the contest?
2. Which are the strong and weak points of the team?
3. How suitable was the chosen programming language, methodology, tools,

and algorithms?
4. What can be improved in the context for next year?
5. Why did your team perform as it did? Why did the other teams perform

better/worse than you did.
6. Which other research fields might be interested in the Multi-Agent Pro-

gramming Contest?
7. How can the current scenario be optimized? How would those optimiza-

tion pay off?

Short Answers

Please provide short answers to all the questions in a separate section. This
does not count for the 10 pages limit.
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Bogtrotters in Space

Dominic Carr, Sean Russell, Balazs Pete, G.M.P. O’Hare, Rem W. Collier

University College Dublin

Abstract. This is the fourth year in which a team from University College Dublin has
participated in the Multi-Agent Programming Contest1. This paper describes the system
that was created to participate in the contest, along with observations of the team’s ex-
periences in the contest. The system itself was built using the AF-TeleoReactive and AF-
AgentSpeak agent programming languages running on the Agent Factory platform. Un-
like in previous years where a hybrid control architecture was used, this year the system
was implemented using only agent code and associated actions, sensors, modules and
platform services.

1 Introduction

This years entry to the 2011 Multi-Agent Programming Contest was designed and built us-
ing the Agent Factory framework, which provides support for the development and deploy-
ment of agent-based applications using a variety of Agent-Oriented Programming (AOP) lan-
guages [Collier, 2002]. As with the previous years entry, our approach was centered around
the use of two specific AOP languages: AF-AgentSpeak, an AgentSpeak variant that is based
on Jason [Bordini et al., 2008] and AF-TeleoReactive, an implementation of Nilssons Teleo-
Reactive programming language [Nilsson, 1994]. Both of these langages were implemented
using the Common Language Framework [Russell et al., 2011], a set of reusable components
that aims to simplify the prototyping of AOP languages.

This is the fourth year in which a team from University College Dublin has participated in
the contest. Last year [rus, ] the team performed well in the herding scenario coming in third
in the contest, that entry building on the work of the two preceding years [Jordan et al., ][Dragone et al., 2009].
This years team included four members from the previous year: Rem Collier (lecturer), Sean
Russell (Ph.D. Student), Dominic Carr (Ph.D. Student) and Gregory O’Hare (professor). Rem
and Gregory are active researchers in the area of Multi-Agent Systems and AOP languages,
Sean and Dominic are working in the area of agent-enabled Wireless Sensor Networks. The
final member of the team was Balazs Pete, a 2nd year undergraduate student who worked on
the contest as part of a summer internship.

Our primary motivation to compete in the contest was to test and debug AgentFactory,
and further refine and direct its development trajectory. As in in previous years we were
strongly motivated to provide new researchers with practical exposure to AOP using Agent
Factory. The contest fits this need, well providing an interesting problem to solve. We also
wanted to drive language development within AgentFactory.

To this end, one of our goals was to remove our dependency on a behaviour-based ar-
chitecture that had previously been used to implement core behaviours of the system. In-
stead, we aimed to increase our utilization of AOP languages, and to replace the behavioural
layer with Teleo-Reactive functions. Additionally, we sought to use the Environment Inter-
face Standard (EIS)[Behrens et al., 2011] integration provided with the contest server instead
of building a custom solution. Further details of our approach can be found in section 3.

1 http://www.multiagentcontest.org/2011

75 Technical Report IfI-12-02



2 SystemAnalysis andDesign

The development model used was based on a team programming approach to system de-
velopment that was adopted for the previous contest [rus, ]. At any point in time, one team
member was actively engaged with coding and the other team members provided strategy
analysis, debugging assistance etc. Whenever the team identified a possible strategy, a ”cham-
pion” was assigned to seperate from the main group and to flesh out the idea. Once finished,
the ”champion” then presented the idea to the rest of the group. If accepted by the group,
the idea was prioritised and added to the to do list.

The overall approach adopted was decided upon at the start of our involvement in the
project. In essence, our objective was to maintain the centralised task allocation model used
in the previous architecture, but to replace the low level behaviours with teleo-reactive func-
tions and EIS integration. All of our analysis and design work was targeted at solutions which
were compatible with this general architecture. We did not consider any of the software en-
gineering methodologies outlined in the literature. Where necessary, Agent UML Protocol
Diagrams were used to illustrate interaction protocols and pseudo code, adapted to our plan-
ning language, was used to outline plans. For the AF-TeleoReactive programs, a function hi-
erarchy diagram was used to outline designs.

In our architecture coordination of information is carried out through the use of a num-
ber of platform services, which represent shared platform wide resources for the agents.
The primary service is the map service, in simplest terms this service could be viewed as
a whiteboard where agents could post relevant information to be made available to other
agents, secondly it also allowed some analysis of the data to be performed e.g. identifying
the highest value zones or routing between two vertices in the graph. Team coordination was
achieved through the use of another platform service, the group service, which was used by
the leader agent to assign tasks to the individual agents.

The attributes of autonomy, pro-activeness and reactiveness were implemented by making
use of two AOP languages and more specifically through the structure of the AF-TeleoReactive
programs which can allow the agents to bypass their assigned task in favour one of their own
goals.

Our system is a true multi-agent system with centralised coordination. The choice of cen-
tralised coordination was made in an effort to allow the rapid prototyping of different task
allocation strategies during development while abstracting from communication issues. In
order to facilitate this centralised coordination, a leader agent was specified to complement
the in-situ ATPV agents. This strategist agent performs some rudimentary analysis of the
graph to determine the cluster of vertices with the highest value, then based on the struc-
ture of the graph a number of vertices are selected on which to position agents, which are
then associated with individual agents.

During the course of the contest or prior to this we did not discuss our strategies with any
other teams, this was primarily in an effort to remain competitive as our experience from
participation in last years contest highlighted the importance of effective strategies. To this
end we only participated in a single test match which we used to ensure we could successfully
connect to the server and perform actions in a reasonable time.

The implementation of the system took approximately 600 hours, the majority of this
time can be attributed to an internship undertaken by Balazs Pete over a 12 week period
from June until the end of August. The remainder of the time can be accounted for when the
rest of the team picked up the development two weeks before the contest.
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3 Software Architecture

As in previous years, our system utilised Agent Factory (AF) [Collier, 2002] as our underly-
ing agent technology. AF is an open-source Java-based framework that provides support for
the development and deployment of agent-oriented applications. Specifically, it provides a
generic Run-Time Environment (RTE) for deploying agent-based systems that is based on the
FIPA standards [Poslad et al., 2000] together with a set of development kits that facilitate the
implementation of diverse agent types, ranging from custom agent architectures to agent
programming languages.

The RTE consists of a set of configurable agent platforms that contain the machinery
necessary to deploy these agent types together with support for the deployment of platform-
level resources, known as platform services, that are shared amongst the agents residing on
the platform. Other support includes a range of monitoring and inspection tools that aid
the developer in debugging their implementations.

The development kits provide the core agent interpreter/architecture together with ap-
propriate customisations for the AF tool support. This will typically include a set of plugins
for the AF Debugging Tool and an Eclipse plugin for the AF IDE (which is a set of plugins
for Eclipse). For the purposes of this competition, we made use of two of the AOP language
development kits packaged with AF, which are introduced next.

3.1 AF-TeleoReactive

AF-TeleoReactive is based on Nils Nilsson’s Teleo-Reactive agent paradigm [Nilsson, 1994]
which was designed to react to a changing environment (hence reactive) whilst still perform-
ing actions which take it to it’s goal (hence teleo, meaning goal oriented). The functional
components of AF-TR agents are represented by an ordered list of production rules.

An example of a production rule would be K → A, where the element K represent con-
ditions on the input from the sensors or the model of the environment, and the element A
represent an action on the environment. When a sequence is being interpreted it is scanned
from the top until it comes across a rule whose condition is satisfied. The corresponding
action is then performed and the interpreter is then restarted from the top of the list.

Information about the current state of the environment is gathered via a set of Sensors:
Java classes that convert raw sensor data into beliefs that are added to the agents belief set. To
handle the potentially dynamic nature of the environment that the agent is sensing, beliefs
stored in the AF-TR belief base do not persist by default. Instead they are wiped at the start
of each iteration of the agent interpreter. To cater for beliefs that should persist, considera-
tion must be given to this when creating the sensor, which allows the programmer to define
which types of beliefs should persist. Whether a belief should persist or not depends on the
nature of the item being observed. For instance, in the context of the agent contest, it would
safe to adopt a temporal belief regarding the position of a edge within the map (which by its
very nature cannot move) whereas a belief about the location of a enemy agent will change
over time.

AF-TeleoReactive was developed based on the notion of blind commitment, is so far as the
agent will continue performing an action until its actions have modified the environment
sufficiently to cause another condition to fire. As such it is assumed that the continuous
execution of an action will cause such a change in the environment.
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3.2 AF-AgentSpeak

AF-AgentSpeak is based on Jason [Bordini et al., 2008], a purpose-built agent-oriented pro-
gramming language that implements an extended and improved version of Rao’s AgentS-
peak(L) language [Rao, 1996]. The language consists of a set of plan rules, examples of which
are shown in Fig. 1. Each plan rule consists of a triggering event, a context and a plan con-
taining a number of actions that should be adopted if the plan rule is selected.

The deliberation cycle of AF-AgentSpeak is an adaptation of the algorithm used in Jason
that is compliant with the AF common language framework.

1. An event is selected from the set of internal and external events.
2. All plan rules triggered by this event are then selected.
3. The list of rules is reduced to those whose context evaluates to true.
4. From this list a single plan rule is selected and added to a new or existing intention stack

depending on whether it is a sub plan or new plan respectively.
5. The next step from each of the agents current intentions is executed in parallel by the

agent.

As with Jason, AF-AgentSpeak offers an extended suite of functionality that is not avail-
able in the original version AgentSpeak(L). This includes support for inheritance, partial
plans, abstract plans, and plan overriding as described in [jor, 2011]; and an extended set
of plan operators, including: foreach (plan expansion), while (loops), if (selection), wait and
when (delayed execution), and = (assignment). This extended planning language is provided
as part of the Common Language Framework [Russell et al., 2011].

#agent Leader

module groups -> com.agentfactory.mapc.GroupModule;
module map -> com.agentfactory.mapc.MapModule;

@initialization
+initialized : true <-

groups.setup(groups, [
team(home, [Repairer, Inspector, Sentinel, Sentinel, Explorer, Explorer, Inspector]),
team(support, [Repairer]),
team(away, [Saboteur, Saboteur])]),

@setup;

+sim(end) : true <-
groups.reset,
map.resetService,
.println("resetting"),
@setup;

#partial @setup <-
.abolishAll(strategy(?t, ?x)),
groups.setShared([cash(0), stepNo(0)]);

...

Fig. 1. Example AF-AgentSpeak code from the Leader agent

Figure 1 contains part of the code for the Leader agent. As can be seen in this figure,
the Leader agent accesses the Group and Map services through two purpose-built modules
(these same modules are used by the AF-TeleoReactive agents). On creation, the leader sets
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up 3 groups: a home group, which is responsible for building and holding the zone; an away
group, containing the Saboteurs, and which is charged with the task of attacking the enemy;
and a support group which contains a single Repairer and is responsible for supporting the
away group. Once the groups are setup, the @setup partial plan is invoked, which does addi-
tional configuration steps. A partial plan is used here because the code is common to both
the initialization of the agent and the resetting of the agent when the current simulation
ends.

3.3 Core Architecture

The core architecture of the system is shown in Figure 3, the agents communicate through
the use of the two platform services MapService and GroupService. No agent communicates
directly with another agent wether it represents an ATPV or the leader which has no em-
bodiement in the simmulation. Receiving shared data is done without any requirment to
request or subscribe to particular forms of data. All agents automatically pull all relevant
information during the perception phase of their execution, allowing the agent to use the
shared beliefs as if they were it’s own percepts. An example of this is shown in the first rule in
Figure 2, this is taken from the repair function, which is activated when a dissabled agent is
on the same vertex as a Repairer. The first percept is one shared through the MapService and
the second and third are shared through the GroupService. The second line of the example
is taken from the doAction function where the ?action variable is the first parameter of the
function (in this case repair) and the ?param variable is the second (the name of the agent to
be repaired).

agentInfo(?name,?team,?ver,Saboteur,disabled) & memberOf(home) & groupOrder(away, ?name, primary)
-> doAction(repair,?name, .nil)

step(?step) & (?action == repair) & ~doneActionForStep(?step, ?act) -> eis.perform(repair(?param))

Fig. 2. Example of role based action selection

Agent communication with the server is handled through the Agent Factory EIS layer
and the eismassim jar, this is shown by the second rule in Figure 2 whereby the action and
parameters are passed to the service in the form of a predicate.

The agents were not distributed across multiple machines, implementation of this would
have required a modification to the platform service. this was not done due to time con-
straints.

4 Strategies, Details and Statistics

4.1 Strategy

The overall team strategy is the combination of a number of role dependent strategies and
the over all zone creation strategy. As discussed in Section 3.3 agent coordination and infor-
mation sharing is done through a number of whiteboard type services. Based on information
shared through these services, the agents will perform different actions based on their role
or assigned tasks.

79 Technical Report IfI-12-02



4.2 AgentMental State

In general the prevailing goals which drive the agents are to hold the positions assigned by
the leader, but not all agents were assigned positions. Secondary to this goal some agents
may override this goal with their own periodically. An example of this would be that Inspec-
tors periodically decide to refresh the teams knowledge of the attributes of the enemy and
as such move to inspect each one. Agents can change their behaviour based on a number of
factors such as the conditions shown in Figure 4, or the exceptions is given in Table 1.

Saboteurs are not assigned tasks, they have a priority based attack system where the pri-
ority targets are Saboteurs then Repairers and then everyone else, when en-route to a target
a Saboteur will attack any enemy agent the happens to be on the same vertex. Saboteurs also
use a targeting separate targeting system when two friendly Saboteurs are on the same vertex
ensuring that they both selected different targets.

Repairers are also not assigned tasks directly, rather they are associated with a Saboteur
which they are charged to support. To mitigate the risk of repairers being disabled when
traveling to repair a teammate, we elected to have the disabled agent travel to the Repairer.
This decision also allowed us to keep the two repairers in relatively close proximity to their
assigned Saboteur to minimise the risk of one of them being disabled.

The agents contain an explicit mental state composed of the percepts received from the
server as well as all internally generated beliefs and those received from platform services.

There are both implicit and explicit hierarchies within the structure of the agents. Infor-
mally the Leader agent is responsible for assigning tasks to a sub group of the ATPV agents.
Additionally the Repairers were tasked in a support role following the Saboteurs but did not
answer to them explicitly.

Agent path planning was done using a form of breadth first search which can ignore
edges above a certain weight, this algorithm was chosen as it seemed that the number of
steps taken to travel the a distance was more important than the amount of energy ex-
pended.

Fig. 3.Core Architecture
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Table 1. Agent Autonomic Actions

Role Condition Action
Inspector Enemy with data older than 100 steps Inspect the enemy
All agents Become disabled Move to closest Repairer
Explorers Map becomes dominated (all vertices

owned)
Adopt goal to probe every vertex

All Agents (Except
Saboteurers)

Enemy Saboteur on vertex Parry presumed attack

Repairer Disabled teammate on vertex Repair teammate

4.3 ImplementationDetails

The topology of the map was not analysed in any great detail, basic clustering was performed
to determine the best position to use as the centre of the captured zone, this is modelled on
breadth first search where the cumulative value of the vertices is summed. When the value
is not known it is assumed to be 1.

The agents use the eismassim package in order to communicate with the server, this is
achieved through an existing integration of EIS with AgentFactory.

The role of an agent is captured during the initial percept and stored for reference within
the code, in this way during the execution of the agent. An example of this is given in fig-
ure 4, the first line represents the goal that we should know the role of each of the enemy
agents and the second rule states that we should refresh the information we hold on that
agent if we haven’t inspected them in the last 100 steps.

role(Inspector) & agentInfo(?name,?team,?vertex,?role,?s) & (?role == none) -> inspectAll
role(Inspector) & lastInspected(?n,?s) & step(?step) & (?step > ?s+100) -> inspectEntity(?n)

Fig. 4. Example of role based action selection

4.4 Zones

Zone selection was very simplistic and was not concerned with the actual value we would at-
tain if we we holding certain positions, instead we opted to use a simple clustering algorithm
based on breadth first search to identify a good position to use as the centre of our zone.

Zone defense was designed around a well known concept in ship design whereby it is di-
vided into a number compartments, the basic principle is that when agents are positioned
two steps away from other agents, and sometimes the centre of the zone, this naturally cre-
ates a pattern where subzones exist within the zones. An example of this is shown in Fig-
ure 5(a), when an enemy attempts to break the frontier of the zone the compartment col-
lapses but the rest of the zone remains, this is shown in Figure 5(b).

We did not specifically implement a team behavior for attacking enemy zones but this
occasionally emerges out of aggressive Saboteur behavior, or frontiers may be broken by an
Inspector approaching to inspect enemy agents.
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(a) Zone configuration (b) Zone configuration under attack

Fig. 5. Subgraphs showing zone configuration

4.5 Buying Algorithm

We used a complex recursive buying function designed to maximise the effectiveness of the
our Saboteur agents, it was designed to react to the attributes of the enemy agents always en-
suring that based on our current knowledge we could disable any of the enemies agents with
one hit and survive one hit from the enemy saboteurs. The function was designed recursively
such that when the cash was available a number of agents could purchase simultaneously
based on a hard coded priority.

The achievement points were very important in our strategy as a number of our victories
were based on the fact that our Saboteurs we able to dominate the enemy Saboteurs. Secon-
darily we relied on excess achievement points being spent on a very high visibility for one
of the teams Sentinels in order to keep as much information on the enemy movements as
current as possible.

As an aside during the final game when it was clear that we could not increase our stand-
ing in the league table we attempted a strategy whereby the team did not spend any of the
achievement points. By the end of the simulation we had amassed 54 points resulting in a
much more competitive and exciting simulation.

5 Conclusion

From our participation in the contest were were enable to evaluate and test the functional-
ity of modifications made to the languages we were using. The contest proves every year to
be an impetus for development of new features and thorough testing within the languages
created using the Common Language Framework. It has further affirmed the stability of the
chosen languages for their roles within the architecture of the system, In that Af-Agentspeak
is suited for the organisational role of the leader and AF-TeleoReactive is suited for the more
reactive and time dependent control of the ATPV units in the simulation.
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The team overall performed well, the individual roles of the agents sometimes combining
to work very well together, at an individual level the strategy of the agents worked quite well
but on some occasions the team as a whole became uncoordinated. This resulted from a error
in our approach to development, focusing too much on the low level individual strategies
than the higher level coordination strategies.

As in our conclusion last year we believe that the results of the competition reflect the
effectiveness of the team strategies. In both of the games with the top two teams we were
outclassed in terms of strategy and as a result we were comprehensively beaten. Our closest
match was with third placed TUB, despite losing all the simulations, it was much closer and
much more exciting than any of the games with the lower ranked teams.

For next years contest some changes we would consider beneficial would be to introduce
more static assignment of roles to agents, we believe that this could allow a greater diversity
in capabilities and characteristics of the ATPVs.
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Short Answers

Introduction

1. To involve new researchers with agent-oriented development, and to drive development
of Agent Factory.

2. This is the Fourth year in which a UCD team has entered the contest. The team has had
different configurations over the years, with Dr. Collier as our constant.

3. UCD Bogtrotters
4. The team had 4 developers, all of who were involved in the system design. We have 2

PhD candidates, one lecturer, and one undergraduate student.
5. Sean Russell and Dominic Carr are involved in WSN research, Balazs Pete is still under-

taking undergraduate education, Dr. Collier is an active researcher in the Agents field.

SystemAnalysis andDesign

1. Due to time constraints, our system was not specified or designed using any particular
multi-agent system methodology.

2. No, all information is disseminated to all agents.
3. Communication is performed through platform services providing simple whiteboard

type functionality.
4. The attributes of autonomy, pro-activeness and reactiveness were realised in the use of Agent-

Oriented Programming languages and through the structure of the agent programs which
allow bypassing of the assigned task in favour one of their own goals.

5. Our system is a true multi-agent system with centralised coordination.
6. 600 man hours.
7. We did not discuss our strategies with other developers. We participated in one test match

to test the connection and to assess if actions were completed in a timely manner, more
testing was not carried out due to time constraints.

Software Architecture

1. The Java programming lanquage was used as it forms the basis for AgentFactory.
2. The system was implemented using the AF-TeleoReactive and AF- AgentSpeak multi-

agent programming languages running on the Agent Factory platform.
3.
4. Our development platform was the Eclipse IDE with the inclusion of the AgentFactory

plugin. All members were familiar with Eclipse and, new members spent 1-2 hours learn-
ing how to best use the plugin.

5. AgentFactory.
6. During initial development a number of features were identified as missing from AF-

TeleoReactive such as parallel action execution and executing actions for all available
bindings. These were implemented prior to the start of the competition.

7. Parallel action execution and executing actions for all available bindings simplified the
development task greatly.

8. A modified version of breadth first search designed to be aware of the weight of edges
and maximum energy of the agent.

9. The agents were not distributed across multiple machines, implementation of this would
have required a modification to the platform service. this was not done due to time con-
straints.
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10. The reasoning cycle of the agent was asynchronous with respect to the receive-percepts/send-
action cycle, as such we had to prevent the agent from performing more than one action
in a single simulation step.

11. The most difficult part of the development process was the synchronisation of individual
agent behaviours to have the intended combined effect.

12. Java Code: 3863, Agent Code: 407, Total: 4270

Strategies, Details and Statistics

1. The overall team strategy is the combination of a number of role dependent strategies
and the over all zone creation strategy.

2. The leader agent assigns task to the other agents, information is shared though platform
services.

3. The results of map analysis are exploited to find the best position to use as the centre of
the captured zone.

4. The agents use the eismassim package to communicate with the server.
5. All agents have the same source code, an agents role was stored as a predicate with the

agents beliefs and used to determine the actions the agent would consider/perform.
6. We employed a simple clustering algorithm to identify a position to use as the centre of

our zone.
7. Zone defence was based on subdivision of zones. When agents are positioned two steps

away from other agents, this creates sub-zones within a zone, which can persist if the
frontier is breached. We did not implement an aggressive behaviour, but this occasion-
ally emerges out of the Saboteurs or Inspectors behaviour.

8. Agents can change their behaviour based on a number of factors such as the presence of
enemy agents or being disabled.

9. Breadth first search.
10. We exploited the buying mechanism to maximise the effectiveness of the our Saboteur

agents, the algorithm was reactive to the current knowledge of enemy capabilities.
11. The buying mechanism was used to attempt to gain supremacy in individual battles be-

tween saboteurs.
12. Yes, they have a mental state made up of internal beliefs and shared information from

the platform service.
13. Agents communicate through a shared a platform service. The leader assigns tasks through

this service.
14. There are both implicit and explicit hierarchies within the structure of the agents. In-

formally the Leader agent is responsible for assigning tasks to a sub group of the ATPV
agents. Additionally the Repairers were tasked in a support role following the Saboteurs
but did not answer to them explicitly.

15. Individually the agents performed as expected, but at a team level emergent behaviour
was observed.

16. The leader agents perform advance planning as regards placement of ATPV agents in the
future steps.

Conclusion

1. The suitability of different AOP languages to different positions within a multi agent
system.

2. Strong: Individual agent strategy, Weak: overall team strategy.
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3. The chosen programming languages were very suited to the roles they were applied to.
4. More Diversity between agent roles.
5. Strategy was the primary factor in the final tournament rankings.
6. The contest may be of interest to researchers in the broad AI field who are not directly

working with agents.
7. Increasing the size of the maps and the number of agents would create a more challeng-

ing contest.
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Abstract. This report presents the design and results of the d3lp0r
multi-agent system developed by the LIDIA team for the Multi-Agent
Programming Contest 2011 (MAPC). The d3lp0r agents use a BDI ar-
chitecture extended with planning and argumentation (via Defeasible
Logic Programming) to model a cooperating team operating in a dy-
namic and competitive environment.
In particular, the main goal of this report is to describe the chosen ar-
chitecture, the communication scheme and the way argumentation
was put to use in the agent’s reasoning process and the technical de-
tails thereof.

1 Introduction

The d3lp0r system was developed in the context of the Multi-Agent Pro-
gramming Contest 2011 (MAPC) [Behrens et al., 2010] hosted by the Claus-
thal University of Technology 1. The LIDIA (Laboratorio de Investigación y
Desarrollo en Inteligencia Artificial, Artificial Intelligence Research and De-
velopment Laboratory) research group was established in 1992 at the Univer-
sidad Nacional del Sur. The d3lp0r team was formed incorporating six grad-
uate students, two Ph.D. students and three professors. The undergraduate
students fully developed the system, while the Ph.D. students and professors
provided guidance. The group’s main motivation was to apply argumenta-
tion [Prakken and Sartor, 1997,Rahwan and Simari, 2009]
[Bench-Capon and Dunne, 2007] via defeasible logic programming (DeLP
[Garcia and Simari, 2004]) in a BDI based agent [Amgoud et al., 2008], in the
context of a multi-agent gaming situation, and to test the integration of the
different technologies used.

2 System Analysis and Design

Despite many man-hours dedicated to design in the early stages of the com-
petition, the development team’s lack of experience in multi-agent systems

1 More information in www.tu-clausthal.de
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made several changes and additions necessary and precluded the use of de-
sign methodologies specific to multi-agent systems. Nevertheless, our ap-
proach was more than satisfying, resulting to be modular, correct and in
close correspondence with the literature.

The solution follows a decentralised architecture in which agents run com-
pletely decoupled in different processes with no shared state.

In addition to the agent processes, the system design includes an inde-
pendent “percept server”, through which percepts are communicated among
agent team members via a broadcast mechanism running on standard net-
work sockets. Each agent handles his own connection to the MASSim server,
and upon receiving its percept, retransmits it to the percept server. The per-
cept server joins all percepts into a “global percept”, and sends each agent
the set difference between its own and the global percept. The agent then
enters its reasoning phase and decides which action it will send back to the
MASSim server. Other than the percept server mechanism, there is no com-
munication among team agents. This design was chosen for its minimal com-
plexity.

Agents can also be configured to run in a standalone mode, in which they
will not use the percept server and thus have no communication with the
rest of the team. Team performance drops noticeably in this case, as the ac-
tions are less informed.

Agents are completely autonomous meaning that decision-making takes
place individually at the agent level, with no intervention from human op-
erators or a central intelligence agency within the system, and that deci-
sions made by an agent are influenced solely by the current simulation state
and the results of previous steps. Despite the sharing of all percepts among
the team agents in the initial phase of the turn, no control variables or in-
structions are included. The agent architecture developed is based on the
BDI model [Rao and Georgeff, 1991], and is explained in detail in further sec-
tions.

The agents’ behavior can be considered proactive, given they pursue their
selected intentions over time, that is, they have persistent goals. Plans for
achieving intentions are recalculated and followed for the number of steps
requiered, unless the goal in question becomes impossible or no longer rele-
vant.

Approximately 1500 man-hours were invested in the team development.
Experience from a previous instance of the MAPC was shared with our teams
by members of the ARGONAUTS team from TU Dortmund[Hölzgen et al., 2011].
Although the initial plan was to run tests against other agent teams prior to
the competition, time constraints made this impossible.

3 Software Architecture

This section details the implementation and module organization of the pro-
posed multi-agent system.
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3.1 Programming languages, platforms and tools

The agent system was implemented using Python 2.7 and SWI Prolog 5.10.5.
Language integration was achieved using the pyswip library2, which facili-
tates the execution of Prolog queries from Python. The implementation of
Defeasible Logic Programming (DeLP) by the LIDIA [Garcia and Simari, 2004]
was used for the deliberative process, in which desires and intentions are set.
The standard Python and SWI-Prolog debugging tools were used. DeLP in-
cludes a graphical viewer for dialectical trees, allowing visualization of which
arguments attack others and facilitating debugging of the defeasible rules
employed. These languages and platforms were well-known at the start of
the project, and were chosen for precisely those reasons.

No multi-agent programming languages / platforms / frameworks were
used due to a lack of familiarity on behalf of the development team. Also, in-
tegrating or extending an existing framework with queries to defeasible rules
was initially considered more difficult than the straighforward approach taken.

Python’s amenity to rapid application development and “batteries-included
philosophy” facilitated implementing the communication layer to the MAS-
Sim server, parsing of perceptions, rapid addition of planned features and
bug correction. DeLP’s capability to deal with conflicting pieces of informa-
tion was also very helpful in order to implement the decision-making mod-
ule.

3.2 Implementation

The system was implemented as a collection of independent operating sys-
tem processes, the percept server (PS from here onwards) and each agent
running in its own address space. The agents are started individually and
synchronize via the PS. Each one handles its own connection to the MAS-
Sim and percep servers, as the eismassim package provided by the contest
organizers was not used to avoid the difficulty of integrating yet another lan-
guage and runtime (Java) with the ones being used.

Fig. 2 shows the structure and flow of control and information within the
decision making module implemented in Prolog and DeLP.

Agent main program. The agent main program is implemented in Python,
and handles all communication with the servers, XML parsing, processing
the information in the percept into a form suitable for assertion in the agent’s
knowledge base, and generation of the XML representing the action taken
which is returned to the MASSim server.

Initialization consists of opening the connections to the MASSim server,
authenticating, opening the connection to the PS, and starting the Prolog
engine. The main program loop is then entered, in which messages from the
MASSim server are received and parsed.

2 http://code.google.com/p/pyswip/
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global perceptagent percept

Percept InformationAction

Fig. 1. Agent architecture in a flow chart-like diagram. Dashed arrows represent pro-
cess flow, solid lines represent data flow.
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Fig. 2. Architecture of the Prolog decision module

When a message of type sim-start is received, initial information present
in the message such as the agent’s role and the simulation parameters are
asserted into the agent’s knowledge base and the perceive-act loop is started.

Each iteration of the perceive-act loop expects a request-action message
from the MASSim server and parses the XML into a Python dictionary. Ele-
ments in the percept are divided into a “public” section, which is sent to the
PS to be shared with other team agents and a “private” section.

DEPARTMENT OF INFORMATICS 90



The agent will then send the percept to the PS and await the global per-
cept containing the remaining information perceived by the team. The global
percept is merged with its own, and asserted into the agent’s knowledge base,
establishing the agent’s beliefs. Note that no information is included in the
percept other than what is received in the percept.

The decision making module implemented in Prolog is then queried for
the next action to be performed by the agent. Once control flow returns to
the Python program with the determined action, the corresponding XML
message is generated and sent to the MASSim server.

Percept Server. The PS maintains a connection for each agent. The con-
nection handling methods encode the associate array into a form suitable
for conversion into a set datastructure, which is then sent over the network.
On each iteration, the PS waits for each agent’s data, performs a union of all
data sets, and returns to each agent the set difference between the data the
agent sent and the total union. Figures 3 and 4 show example percepts after
parsing, before being sent to the percept server.

{ ’surveyed_edges’ : [ ],

’vis_verts’ : [ { ’name’: ’vertex65’,

’team’: ’none’ },

... ],

’vis_ents’ : [ { ’node’: ’vertex97’,

’status’: ’normal’,

’name’: ’a6’,

’team’: ’A’ },

... ],

’inspected_ents’ : [ ],

’vis_edges’ : [ { ’node1’: ’vertex141’,

’node2’: ’vertex65’ },

... ],

’position’ : [ { ’node’: ’vertex141’,

’vis_range’: ’1’,

’health’: ’6’,

’name’: ’self’,

’max_health’: ’6’ } ],

’probed_verts’ : [ ] }

Fig. 3. A sample public section of a percept, after parsing.

Beliefs-Desires-Intentions Once the remaining information is received
from the percept server, the data is then asserted into the agent’s knowledge
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{ ’total_time’: 2000L, ’zone_score’: ’0’,

’last_step_score’: ’20’, ’timestamp’: ’1323732915832’,

’strength’: ’0’, ’energy’: ’11’,

’money’: ’12’, ’max_energy_disabled’: ’16’,

’last_action’: ’recharge’, ’max_health’: ’6’,

... }

Fig. 4. A sample private section of a percept.

base. A collection of predicates queried from the main Python module are
in charge of verifying that information is not overwritten, and that redun-
dant information is not inserted. Most predicates which represent the state
of the environment include a parameter bound to the turn the information
was perceived, so that information can be considered “stale” if the difference
between the current turn and the turn the information was acquired is too
large.

Beliefs in the knowledge base are represented as terms, arguments to the
predicate b/1. Desires are also represented as Prolog terms; possible desires
are expansion (increase the value of a zone), explore (probe nodes and in-
crease the team’s knowledge of the graph), regroup (move closer to team
members), seekforrepair (move closer to an agent with the repairer role),
selfdefense, parry, stay (do not move), buy, probe, repair, attack. The de-
sires an agent may entertain depend on the agent’s role.

The intention is selected from the set of possible desires the agent may en-
tertain. If the agent already has an intention stored, the cut condition checks
whether it makes sense to keep trying to fulfill it. It is a series of simple con-
ditions that review the state of the world.

Then, if there is not any committed intention, or the cut condition de-
cides it is not interesting to keep it, the beliefs setting process is started. It gen-
erates the possible desires for this step, according to what is stored in the
knowledge base, and, for each one of them, the beliefs needed. The decision-
making module is implemented in DeLP [Rotstein et al., 2007] [Ferretti et al., 2008],
a defeasible logic programming language that uses argumentation [Besnard et al., 2008]
to reason with conflicting information. Given the set of possible desires and
beliefs set by the previous module, it selects the best desire, returning it as
the intention that the agent commits to achieve.

All the plans for all the desires were previously calculated and stored as
beliefs, since the amount of steps that they take is used by the argumentation
module. The planning module selects the one corresponding to the selected
intention, and stores it. Then, the execution module only gets the plan, and
returns to Python the first action in it. For both search algorithms, the Depth
First Search and the Uniform Cost Search, we added conditions that could
cut several branches, when they were expanding to unwanted nodes. This
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conditions were set by the caller, since they depend on the context of the
problem.

For the UCS, we first used a simple stack implemented with a list, to keep
track of the frontier, because of Prolog’s inability to work with arrays. This
would have allowed us to develop a heap data structure, to be used in a pri-
ority queue. Lately, we found a Prolog library that implemented this data
structure, and the migration was pleasantly straightforward.

However, if the process flow comes from the other branch of Fig. 1 (that is,
after the cut condition, the agent has an intention), the execution is not that
simple. Since skipping the decision- taking makes this branch insignificant
in terms of time, we decided to recalculate the plan. This might help us when
a better path is discovered, even though this is unlikely.

Deliberation and DeLP. In DeLP[Garcia and Simari, 2004], knowledge is
represented using facts, strict rules and defeasible rules. Facts and strict rules
are ground literals representing firm information that cannot be challenged.
Defeasible Rules (d-rules) are denoted L0 —< L1, . . . , Ln (where Li are literals)
and represent tentative information. These rules may be used if nothing could
be posed against it. A d-rule “Head —< Body” expresses that “reasons to believe
in Body give reasons to believe in Head”. A DeLP program is a set of facts, strict
rules and defeasible rules.

Strong negation is allowed in the head of program rules, and hence, may be
used to represent contradictory knowledge. From such a program contradic-
tory literals could be derived, however, the set of facts and strict rules must
possess certain internal coherence (it has to be non-contradictory).

To deal with contradictory information, in DeLP, arguments for conflict-
ing pieces of information are built and then compared to decide which one
prevails. The prevailing argument is a warrant for the information that it sup-
ports. In DeLP, a query L is warranted from a program if a non-defeated argu-
ment that supports L exists.

selfDefense(1000) -<

myStatus(normal), canParry,

myPosition(Node), enemySaboteurPosition(Node).

canParry -< myRole(repairer). canParry -< myRole(saboteur).

canParry -< myRole(sentinel).

~canParry <- myEnergy(Energy), less(Energy, 2).

Fig. 5. Desire SelfDefense

Figure 5 is an example of our representation of the possible intentions
written in DeLP. Self defense has a weight of 1000. It is a high priority inten-
tion given that the average weight of the intentions is around 150. myStatus,
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myPosition, enemySaboteurPosition, myRole and myEnergy are facts of the
knowledge base. canParry arguments will support or defeat arguments for
selfdefense intention.

3.3 Difficulties encountered

The most difficult problems were related to optimization. Much of our time
was spent in reducing the complexity of our algorithms, and the times they
were called.

Our initial plan was to distribute agents on several machines. Each agent
runs as a separate process, and communicates with others via TCP sockets.
After some experience and benchmarking, agents were run on one machine,
due to For both search algorithms, the Depth First Search and the Uniform
Cost Search, we added conditions that could cut several branches, when they
were expanding to unwanted nodes. This conditions were set by the caller,
since they depend on the context of the problem.

For the UCS, we first used a simple stack implemented with a list, to keep
track of the frontier, because of Prolog’s inability to work with arrays. This
would have allowed us to develop a heap data structure, to be used in a pri-
ority queue. Lately, we found a Prolog library that implemented this data
structure, and the migration was pleasantly straightforward.

Our initial plan was to distribute agents on several machines. After some
benchmarking agents were run on one machine due to performance issues.
Having the option to easily try both approaches was a benefit of the pro-
posed design.

In total, the system consists of 1336 lines of Python, 5059 lines of Prolog
pertaining strictly to the agent, belief setting and auxiliary predicates, and
355 lines of DeLP rules, both defeasible and strict. The DeLP interpreter con-
sists of 4494 lines of Prolog. These figures includes commentaries and blank
lines.

4 Strategies, Details, and Statistics

In this section, we will explain the main characteristics of the team’s overall
strategy, as well as several implementation details, such as algorithms used
and agents’ organization.

4.1 Strategy

The main strategy of the team consists of detecting profitable zones from
the explored nodes, and positioning the agents correctly to maintain, de-
fend and expand the zones formed.

Every agent is concerned with the formation and expansion of zones, be-
yond its role. The decision-taking process is responsible for calculating and
selecting the most beneficial intention. This selection process is based on the
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gain in terms of score, the need of the team for the execution of a role-specific
action, or the benefit that the agent is currently contributing to the team.

Agents coordination is implicit, only involving the percept information
and in particular excluding processed beliefs and control variables. The agents
do not communicate intentions or plans.

Agents do not change their behavior during runtime, maintaining the
same strategy throughout all simulation stages.

Zone conquering. The exploration of the map is done gradually. Actions
related to the exploration (probe, survey) are weighed along with all other
actions and selected when considered important. This occurs to a greater ex-
tent during the initial steps of the simulations, when the team lacks knowl-
edge of the map and other actions are unnecessary. Agents make no assump-
tions regarding the map topology.

Behavior is not primarily focused on finding new zones, but agents do
attempt to expand and maximize the points of the existing ones. They cal-
culate whether they are part of a zone or not. This is achieved by checking
the color of the current node and whether a neighbor of it is also colored by
the agent team (if this is not the case, the node does not increase the zone
points). If an agent is not part of any zone it tries to regroup with its team-
mates.

When a zone is formed and an agent is part of it, for each potentially ben-
eficial neighbor node, the agent calculates how much points the team would
gain if it moves, and tries to expand the zone. If the expansion intention is
selected and acted upon, then a new better zone is implicitly conquered.

Coloring algorithm. This estimations are done with our reimplementa-
tion of the coloring algorithm used by the MASSim server. The information
is used by the decision taking module. Our approach makes several assump-
tions that facilitate the application of the algorithm in a map that has not
been completely explored.

Attacking and defending. Both attacking and defense of zones are im-
plicitly implemented. Saboteurs prefer to attack enemies that are near, so if
an agent of another team enters our team’s zone, it will be attacked by the
saboteurs in the zone. This is the most likely scenario, unless the saboteur’s
position is so important that it decides to stay in the formation in order to
keep the zone.

The same happens with enemies in their own zones. Zones are not in-
tentionally destroyed, but any agent that is part of a zone may be attacked,
affecting possibly the structure of the enemy zone.

Agents of other roles can also implicitly defend a zone. For example, an
agent can go to a node that has one agent of each team, with the purpose of
coloring the contested node and defending the zone.

95 Technical Report IfI-12-02



Buying. Agents follow a list of predefined buying actions, when the neces-
sary amount of money is reached. This behavior follows the idea of getting
some specific skill upgrades that the team considered important to achieve
early in the simulations.

Achievements. Achievements are not explicitly taken under considera-
tion. That is, the agents’ reasoning process is not affected by the possibility of
completing achievements. However, the team can manage to achieve a sig-
nificant number of them, which results naturally from the agents’ behavior.
This fact let the development team avoid the need of adding special features
dedicated to the seek of achievements.

4.2 Implementation

Here are some implementation details of the different parts of the agents.

Mental state. Agents have a complete and explicit mental state. It consists
of a set of components, such as beliefs, desires, intentions, and plans. The
belief base includes the information obtained from the perceptions, as well
as different kinds of beliefs required by the decision-taking module. The de-
sires are set every step that the agent decides to select a new intention. The
intentions and plans kept in the knowledge base are those that the agent is
currently carrying out.

Path planning. Path planning is implemented with an Uniform Cost Search
[Russell and Norvig, 2003]. We tried to minimize the amount of steps required
to achieve the goal, rather than the energy spent. The returned result is a list
of actions to be done, rather than a list of nodes.

Since this algorithm can be called several times in one step, and given
that the actual amount of steps spent by an intention is taken under con-
sideration by the decision-taking module, it was crucial to perform several
optimizations in it. In the end, this allowed us to run all the agents in a sin-
gle machine during the competition.

The plans are as long as the selected intention requires. This may sound
excessive, but the possible goals were previously selected for their potential,
taking into consideration their distances (in nodes, not in actions). However,
plans are recalculated in every step, as explained earlier.

4.3 Agents’ organization

The decision-taking module makes use of other agents’ status, but there is
neither negotiation nor intentions exchange, so the team performance is
emergent on individual behavior.
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Referring to our actual programming, all the agents have a strong core of
common code, which is all the Python part, that servers as a receive-percepts/send-
action client of the server; the Percept Server; and an important part of the
Prolog code. This includes all the utilities used, the implementation of the
BDI architecture, the structure of the decision-taking module, and a consid-
erable part of the arguments used, that are common to all the roles.

Apart from all this, each role has a couple of separate files, that have spe-
cific code, including the arguments used in the decision-taking module, and
the setting of the beliefs needed for those arguments. Here is where the indi-
vidual behavior is set, since the specific actions that can be done by each role
are taken into consideration here.

5 Conclusion

In this section, we make some final comments about the contest and our
experience.

5.1 Our team, and its development

Being our first experience building a system this size, we learned several lessons
about working in large projects, such as setting standards and synchronizing
versions of the technologies used.

In LIDIA, our teammates have done an important amount of research in
argumentation and multi-agent systems, providing valuable experience and
guidance.

We believe the right decisions were taken regarding the programming
languages. DeLP resulted suitable for the implementation of the decision-
making module since it was flexible enough to develop our argumentation
approach.

Several hotfixes that were written and deployed during the competion
due to the lack of testing. Avoiding this undesireable situation is one of our
main priorities for next year’s competition.

Our lack of experience in this kind of contests, unexpected network and
latency problems, as well as some bugs that caused critical performance is-
sues, caused our team to lose several matches that could have been won oth-
erwise.

5.2 Our thoughts about possible optimizations to the contest

More information associated to nodes, e.g. absolute coordinates, would help
in the implementation of directed search decreasing execution time.

Strategically, the early dominance of the center area played an important
part of a good candidate to win a match. It would be useful to try other vari-
ations, such as making the borders more important, or others shapes of the
map, such as stretched, in form of V, X, O, etc. This would benefit teams that
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explicitly and thoughtfully look for and conquer good zones, rather than
benefiting teams that assume that only one good zone exists in the middle
of the map.

More feedback from the server would be appreciated, especially regarding
errors. This is important for detection of bugs involving communication, i.e.
problems with the connection, files sent.

Test matches in earlier stages of development would reduce technical er-
rors during the competition. Teams reimplementing the eismassim commu-
nication functionality are vulnerable to errors difficult to foresee.

Finally, we think both Robotics and Game AI are interesting fields that
could benefit from participating in the contest.
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Short Answers

Introduction

Question 1. What was the motivation to participate in the contest?

The group’s main motivation was to apply argumentation via defeasible
logic programming (DeLP) in a multi-agent gaming situation and to test the
integration of the different technologies used.

Question 2. What is the history of the team?

The LIDIA research group was established in 1992 in the Universidad Na-
cional del Sur, and it is the first time our team participates in the contest.

Question 3. What is the name of your team?

The team’s name is d3lp0r.

Question 4. How many developers and designers did you have? At what level
of education are your team members?

The d3lp0r team was formed incorporating six graduate students, two
Ph.D. students and three professors.

Question 5. From which field of research do you come form? Which work is
related?

The LIDIA research group has been working in Artificial Intelligence and
Argumentation via Defeasible Logic Programming for almost 20 years now,
and the DeLP server technology developed has been used in the contest.

System Analysis and Design

Question 1. If some multi-agent system methodology such as Prometheus,
O-MaSE, or Tropos was used, how did you use it? If you did not what were
the reasons?

No design methodology specific to multi-agent systems was used.

Question 2. Is the solution based on the centralization of coordination / in-
formation on a specific agent? Conversely if you plan a decentralized solu-
tion, which strategy do you plan to use?

The solution follows a decentralized architecture in which agents run com-
pletely decoupled in different processes. Agents share no memory and decision-
making takes place individually, even though every agent communicates part
of his perception to the others.

Question 3. What is the communication strategy and how complex is it?
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Percepts are communicated among agent members of the team via a broad-
cast mechanism developed as part of the multi-agent system. This design was
chosen for its minimal complexity.

Question 4. How are the following agent features considered/implemented:
autonomy, proactiveness, reactiveness?

Agents are completely autonomous; decision-making takes place individ-
ually at the agent level, with no intervention from human operators or a cen-
tral intelligence agency within the system. Agents assign priorities to differ-
ent possible goals depending on their desires, and plan in order to achieve
the most valuable goal. This results in more autonomous way in which an
agent acts. The agents’ behavior can be considered proactive, given they pur-
sue their selected intentions over time, that is, they have persistent goals.

Question 5. Is the team a truly multi-agent system or rather a centralized sys-
tem in disguise?

The team is a truly multi-agent system, and has no centralized character-
istics beyond the sharing of all percepts among the team agents.

Question 6. How much time (man hours) have you invested (approximately)
for implementing your team?

About 1500 hs.

Question 7. Did you discuss the design and strategies of your agent team with
other developers? To which extent did your test your agents playing with
other teams?

Experience from a previous instance of the MAPC was shared with our
teams by members of the ARGONAUTS team from TU Dortmund[Hölzgen et al., 2011].
Although the initial plan was to run tests against other agent teams prior to
the competition, time constraints made this impossible.

Software Architecture

Question 1. Which programming language did you use to implement the multi-
agent system?

The agent system was implemented using Python 2.7 and SWI Prolog
5.10.5. DeLP, a defeasible logic language, was used as a service within Prolog.

Question 2. Did you use multi-agent programming languages? Why or why
not to use a multi-agent programming language?

No multi-agent programming languages/platforms/frameworks were used.
Being the first time we participated in the contest, we decided not to use
technologies that we had absolutely no experience on. Besides, one of our
goals was to develop our own platform in order to keep developing in the
future.
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Question 3. How have you mapped the designed architecture (both multi-
agent and individual agent architectures) to programming codes i.e., how
did you implement specific agent-oriented concepts and designed artifacts
using the programming language?

The perception is processed by the Python program, that parses the XML.
Then, it sends it to the Percept Server that every step merges all perceptions,
and delivers them back to the agents. The Python code asserts all the percep-
tion into Prolog, then querying it for the next action to be executed. Prolog
handles all the decision making, argumentation and planning, and returns
the action binded to a variable to Python, that then generates with it an XML
to be sent to the server.

Question 4. Which development platforms and tools are used? How much
time did you invest in learning those?

All our code was written using either vim (on Linux) or Notepad++ (on
Windows). We used no IDEs, but occasionally we did use the SWI-Prolog in-
tegrated debugger.

Question 5. Which runtime platforms and tools (e.g. Jade, AgentScape, sim-
ply Java, ....) are used?

How much time did you invest in learning those? Python and Prolog were
the chosen languages for the development of the system. Most of us had al-
ready worked with both of them, so we did not spend much time learning
those.

Question 6. What features were missing in your language choice that would
have facilitated your development task?

Question 7. What features of your programming language has simplified your
development task?

Python’s amenity to rapid application development and ’batteries-included
philosophy’ facilitated implementing the communication layer to the MAS-
Sim server, parsing of perceptions, rapid addition of planned features and
bug correction. We made use of Prolog’s declarative nature to model states
of the world, and it also made it more straightforward to implement search
algorithms.

Question 8. Which algorithms are used/implemented?

Search algorithms, as Uniform Cost Search and Depth First Search, as well
as the zone-coloring algorithm were implemented in Prolog. The implemen-
tation of Defeasible Logic Programming (DeLP) by the LIDIA was used for the
deliberative process.

Question 9. How did you distribute the agents on several machines? And if
you did not please justify why.
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Initial plans were to distribute agents on several machines. Each agents
runs as a separate process, and communicates with others via TCP sockets.
After some experience and benchmarking, agents were run on one machine
due to performance issues. Having the choice was a benefit of the proposed
design.

Question 10. To which extend is the reasoning of your agents synchronized
with the receive-percepts/send-action cycle?

All the reasoning is done after receiving the percepts, and before sending
the action.

Question 11. What part of the development was most difficult/complex? What
kind of problems have you found and how are they solved?

The most difficult problems were related to optimization. Much of our
time has been spent in reducing the complexity of our algorithms, and the
times they are called.

Question 12. How many lines of code did you write for your software?

Total LOC is 5842.

Strategies, Details, and Statistics

Question 1. What is the main strategy of your team?

The main strategy of the team consists of detecting profitable zones from
the explored vertices, and positioning the agents correctly to maintain, de-
fend and expand the zones. Every agent, beyond its role, is concerned with
the formation and expansion of zones. The decision-taking process is re-
sponsible for calculating and selecting the most beneficial intention, which
may be focused in the zone conquering (if possible), or not.

Question 2. How does the overall team work together? (coordination, infor-
mation sharing, ...)

The agents coordinate in an implicit way. This is, the information shared
consists only of the perception received, without having neither preprocessed
beliefs, nor control variables. The agents do not communicate their inten-
tion, or plans, so any coordination that they may have has been achieved
implicitly.

Question 3. How do your agents analyze the topology of the map? And how
do they exploit their findings?

Agents make no assumption about the map topology. The exploration of
the map is done gradually, as a result of the reasoning process.
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Question 4. How do your agents communicate with the server?

Some functionality provided by the eismassim library was reimplemented
in a connection library in Python.

Question 5. How do you implement the roles of the agents? Which strategies
do the different roles implement?

Agents recover their assigned role from the simulation start message. Each
role has a couple of separate files, that have specific code, including the ar-
guments used in the decision-taking module, and the setting of the beliefs
needed for those arguments. All agents follow the same concept. Every agent
is concerned with the formation and expansion of zones, beyond its role.

Question 6. How do you find good zones? How do you estimate the value of
zones?

Agents are not primarily focused on finding new zones, but they attempt
to expand and maximize the points of the existing ones. They calculate whether
they are part of a zone or not. If an agent is not being part of any zone, it tries
to regroup with its teammates. When a zone is formed, and the agent is part
of it, for each potentially beneficial neighbor node, the agent calculates how
much points would the team gain if it moves, and tries to expand the zone.
This estimations are done with our reimplementation of the coloring algo-
rithm used by the MASSim server.

Question 7. How do you conquer zones? How do you defend zones if attacked?
Do you attack zones?

Both attacking and defense of zones are implicitly implemented. sabo-
teurs prefer to attack enemies that are near, so if an agent of another team
enters our team’s zone, it will be attacked by the saboteurs in the zone. The
same happens with enemies in their own zones. Zones are not intentionally
destroyed, but any agent that is part of a zone may be attacked, affecting pos-
sibly the structure of the enemy zone.

Question 8. Can your agents change their behavior during runtime? If so,
what triggers the changes?

Our agents do not change their behavior during runtime. This feature was
analyzed, but the team did not have enough time to finish its implementa-
tion.

The approach proposed consists in adding a phase indicator that holds
different phase values like ’exploration’, or ’expansion’. The phase is updated
at runtime considering elements like the number of steps or the team’s over-
all performance in the simulation in progress.

The phase component is weight as an extra factor that modifies the po-
tential benefit of each action, so that its inclusion directly affects the action-
selection process.
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Question 9. What algorithm(s) do you use for agent path planning?

Path planning is implemented with an Uniform Cost Search. What we
tried to minimize was the amount of steps required to achieve the goal, rather
than the spent energy. The returned result is a list of actions to be done.

Question 10. How do you make use of the buying-mechanism?

Agents follow a list of predefined buying actions, when the necessary amount
of money is reached. This behavior follows the idea of getting some specific
skill upgrades that the team considered important to achieve early in the
simulations.

Question 11. How important are achievements for your overall strategy?

Achievements are not explicitly taken under consideration. The agents’
reasoning process is not affected by the possibility of completing achieve-
ments. However, the team can manage to achieve a significant number of
them, which results naturally from the agents’ behavior.

Question 12. Do your agents have an explicit mental state?

Agents have a complete and explicit mental state. It consists of a set of
components, such as beliefs, desires, intentions, and plans.

Question 13. How do your agents communicate? And what do they commu-
nicate?

Agents only communicate their perceptions via a perception server im-
plemented in Python. On each perceive/act cycle, agents receive the percept
from the MASSim server, separate the information which will remain private
and which will be shared. The public part of the percept is sent to the percept
server, which performs a union of all percept and send the difference back to
each agent. After receiving the joint percept, the agents enter a belief setting
phase, and later an argumentation phase.

Question 14. How do you organize your agents? Do you use e.g. hierarchies?
Is your organization implicit or explicit?

There is no agent hierarchy, and given the decision-making process takes
place individually for each agent, there is no organization between them.
The only organization that they have is the proper given by the environ-
ment, which is the roles.

Question 15. Is most of your agents behavior emergent on an individual and
team level?

The decision-taking module makes use of other agents’ status, but there
is neither negotiation nor intentions exchange, so the team performance is
emergent on an individual behavior.
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Question 16. If your agents perform some planning, how many steps do they
plan ahead?

The agents make plans as long as the selected intention requires. This
may sound excessive, but the possible goals were previously selected for their
potential, taking in consideration their distance (in nodes, not in actions).
However, plans are recalculated in every step.

Conclusion

Question 1. What have you learned from the participation in the contest?

Being our first experience building a system this size, we learned several
lessons about working in large projects, such as setting standards and syn-
chronizing versions of the technologies used.

Question 2. Which are the strong and weak points of the team?

In LIDIA, our teammates have done an important amount of research in
argumentation and multi-agent systems. This allowed the team to take ad-
vantage of previous experiences. As a weak point can be considered the lack
of experience in large projects.

Question 3. How suitable was the chosen programming language, method-
ology, tools, and algorithms?

In retrospective, we may have taken the right decisions regarding the pro-
gramming languages. DeLP resulted to be suitable for the implementation of
the decision-making module since it was flexible enough to develop our ar-
gumentation approach.

Question 4. What can be improved in the context for next year?

There were several hotfixes that were written and deployed at the same
time we were facing our competitors due to the lack of testing in the actual
context of the competition. This situation should obviously not happen, and
adding much more real testing is one of our main priorities for next year’s
competition.

Question 5. Why did your team perform as it did? Why did the other teams
perform better/worse than you did?

We had several problems that did not let us perform as good as we ex-
pected. Our lack of experience in this kind of contests, unexpected network
and latency problems, as well as some bugs that caused critical performance
issues, caused our team to lose several matches that could have been won
otherwise.

Question 6. Which other research fields might be interested in the Multi-
Agent Programming Contest?
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Both Robotics and Gaming AI are interesting fields that could benefit from
participating in the contest.

Question 7. How can the current scenario be optimized? How would those
optimization pay off?

More information for the nodes, including something useful for a directed
search (i.e., absolute coordinates), would help in the implementation of a A*
search (which would decrease execution time). Defining the most valuable
zones randomly would benefit teams that thoughtfully look for and conquer
good zones, rather than teams that assume that the center of the map is the
most valuable zone and do not explore the rest.

More feedback from the server would be appreciated, specially involving
errors.

Finally, we think it would be really helpful that we have test matches in a
more early stage, in order to have more time to correct errors in the client.

DEPARTMENT OF INFORMATICS 106



HactarV2: AnAgent Team Strategy Based on
Implicit Coordination

Marc Dekker, Pieter Hameete, Michiel Hegemans, Sebastiaan Leysen, Joris
van den Oever, Jeff Smits, and Koen V. Hindriks

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

agent-contest@mmi.tudelft.nl

Abstract. In this paper we report on the design and implementation
of our multi-agent system, called HactarV2, for the Agent Contest 2011.
HactarV2 has been implemented in the agent programming language
GOAL. One of the main challenges of the Agent Contest is to design
a decentralized multi-agent system that is able to strategically compete
with other agent teams. To address this challenge, the strategy of Hac-
tarV2 is based on implicit coordination between agents and there is no
central manager that keeps track of all information. The aim, more-
over, has been to minimize the communication between agents. Be-
cause initially agents are randomly placed on the map, in the first phase
of the game the agents individually explore the map and update each
other.In the second phase of the game, which starts when the agents
have located high value nodes on the map, the agents group together
and act as a swarm to maintain and possibly expand the zone on the
map that is occupied by the agents. All the work put in by our team
payed off and HactarV2 won the Agent Contest without losing a single
game. And although we did not get the highest score nor the highest
score difference we did get the lowest score against and the highest sin-
gle game score.

1 Introduction

The scenario of the Multi-Agent Contest 2011, annually organized by Clausthal
University of Technology[Behrens et al., 2010a], involves agents that aim to
explore and exploit the best zones on the planet Mars. The scenario assumes
that water wells have been discovered on Mars and it is now possible to popu-
late the planet. In order to do so, however, it is important to explore Mars, to
locate the best water wells, and to occupy those places. Of course, our team
of agents is not the only team that is exploring Mars but it competes with
another team that has the same goal.

The map of Mars is represented as a graph where nodes denote places and
have a value which indicates the amount of water that is present. A node is
connected to all its neighboring nodes except for those nodes where the map
is mirrored to obtain a symmetric map. Each team consists of 10 agents for
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exploring Mars territory. Five different roles are available and each role is as-
signed to one pair of agents. Explorers can determine the value of nodes; Sen-
tinels have a larger visibility range and can provide more information about
what happens on the planet; Inspectors can determine the roles and status
of enemy agents; Saboteurs have the ability to attack and disable opponent
agents; and, finally, Repairers are able to restore disabled agents back to a
working state.

An elaborate scoring scheme is present which determines the overall scores
each round and points are accumulated over a 1000 rounds. Points can be
scored by effectively using the capabilities of a role; for example, so-called
achievement points are assigned when performing multiple successful at-
tacks. Achievement points can be utilized for purchasing upgrades for agents
or to contribute more directly to the team score. Another way to score points
is to locate high valued nodes in the graph, positioning agents on that node,
and defend them from the opposing team. By occupying larger zones of nodes,
moreover, more points are scored.

In this paper we report on the design and development of our multi-agent
system (MAS) called HactarV2. The HactarV2 MAS has been developed at
Delft University of Technology by the authors, a team of six students and
Koen Hindriks, who supervised the team.

The team name is based on the super computer Hactar from the book
“Life, the Universe and Everything”[Adams, D., 1982]. Hactar is a computer
whose components reflect the pattern of the whole. After failing its intended
purpose it gets pulverized and scattered through the universe. Still opera-
tional, Hactar proceeds to slowly recombine and become a cloud of parti-
cles. It then tries to destroy the universe only to be thwarted by the main
protagonist’s terrible cricket skills. We think that HactarV2 is a fitting name
for our MAS because initially all agents are scattered all over the map as their
positions are randomly allocated and then the agents later during the game
recombine into a swarm.

2 SystemAnalysis andDesign

During the design and development of our MAS we have used the agile soft-
ware development approach Scrum [Schwaber, 1995]. Scrum is an iterative,
incremental framework for project management. It emphasizes short devel-
opment cycles in which clear targets are set to build and extend the function-
ality of a system. We have used the open-source platform iceScrum[iceScrum, 2009]
for managing and maintaining our development process and for collecting
all ideas concerning strategy choices, implementation issues and optimiza-
tion problems. iceScrum supports working with virtual sticky notes for repre-
senting tasks that can be assigned to people and for keeping track of progress.
We decided not to use an agent-based development methodology such as
Prometheus[Padgham and Winikoff, 2003] because the team did not have
sufficient experience with any of these methods.
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In the design of our MAS we opted for a completely decentralized ap-
proach. One of the main reasons for this choice has been the communica-
tion overhead that is needed when a central manager would have been in-
troduced. This would have required the MAS to perform multiple reasoning
cycles to exchange messages between all agents and a manager agent. Our
agents, however, use all available time within a simulation round (2 seconds)
to decide which action to take. As a consequence, messages are received only
in the next simulation round and there is no time within a single round to
process messages. Information exchanged between agents thus would possi-
bly be outdated which makes message exchange ineffective. This applies in
particular to information about positions and the zone that is occupied by
agents but, of course, less so to information about the map itself because the
map itself remains the same throughout the game.

Instead of exchanging many messages with a central manager that con-
trols what agents do, we designed our agents to base their decisions mainly
on the information that is perceived by the agent itself. This ensures that the
information is up-to-date and reduces the need for communication.

Message exchange between agents is used in particular (i) for informing
other agents about the structure of the map, (ii) between disabled agents
and repairers for requesting a repair, and (iii) between non-saboteur agent
to saboteurs for reporting locations of opponent agents. Moreover, an agent
will only send these messages if it is sure that the receiving agent does not
perceive this information itself.

The main reason for exchanging map information between agents is that
they need to have all available map information to ensure adequate perfor-
mance and to avoid doing probe and survey actions that already have been
performed by others. Therefore, information acquired by performing a probe
or survey action is broadcast to all other agents. This may require each agent
to process up to 90 messages that are received from the other 9 agents per
round. Because processing all received map information each round requires
extensive updating of the belief base, we have had to pay quite some time to
optimizing these updates. The benefit of sharing all map information, how-
ever, is that the exploration process can be optimized in terms of speed and
efficiency (i.e. avoid duplicating actions that have already been performed)
and agents are able to do path finding completely autonomously. A down-
side of this design, of course, is that all agents have to process the map infor-
mation which would not have been the case in a centralized design.

Our decentralized design implies that agents make decisions autonomously.
One potential issue that may arise in such a setup is that different agents will
attempt to achieve the same goals. In order to prevent this, agents have been
equipped with the capability to predict what other agents will do. This al-
lows agents to decide who will actually adopt a particular goal. We discuss
these capabilities in more detail in Section 4.
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2.1 Testing

While developing our MAS, we have put a lot of effort in testing and analyz-
ing test results. We considered testing to be very important as it greatly facil-
itates the evaluation of various ideas and strategies that we tried during our
short development cycles. A great benefit of extensive testing has been that
it quickly made us familiar with all the details of the simulation scenario.

We have used various test strategies. Initial testing focused on whether
the MAS behavior was coherent. At this stage we used dummy agents as op-
ponents that did nothing during a simulation (performed skips each round).
In subsequent stages, when we had a reasonably performing MAS, we tested
against the Java teams that were supplied by the organizers. These tests were
particularly interesting as they informed us about the way our agents reacted
to very different agents. We also performed tests in which our most recent
MAS played against older versions in order to verify whether we actually im-
proved our MAS over time. During these tests we observed suboptimal be-
havior that we believe could only have been found because the strategy of
the opposing MAS of our earlier versions was still quite similar. We have also
participated in all test matches that were organized by the contest organiz-
ers.

One testing tactic that we used while debugging our MAS involved the
use of an edited XML configuration file for a simulation which granted our
team 2 million seconds to send their actions. This made it easier to pause the
agent system and study the state of the MAS at a time when something went
wrong. As a result, bugs were found more easily.

In total we have spent roughly 500 man hours on implementing our MAS.
Around 200 hours were spent on increasing performance and solving other
problems and the remaining time was spent on implementing and debug-
ging the multi-agent strategy.

3 Software Architecture

The HactarV2 MAS has been programmed completely in the agent program-
ming language GOAL [Hindriks, 2009,Hindriks et al., 2001,goa, 2011]. All team
members were familiar with GOAL because it is being taught as a first year
course in the Computer Science curriculum at Delft. In this section, we briefly
discuss GOAL and some aspects related to how we structured our code.

3.1 GOAL

GOAL is a logic-based agent programming language. One of its main strengths
is that it facilitates the development of high-level strategies for agents. The
current version of GOAL uses Prolog to represent the knowledge, beliefs, and
goals of an agent. Prolog is a declarative programming language. Prolog pro-
grams consist of rules and facts which describe what is the case and computa-
tion is a form of theorem proving instead of the usual procedural style where
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a programmer needs to write programs that dictate how something is to be
computed. Using Prolog, GOAL agents can derive new facts from their beliefs
about the environment and the goals they want to achieve. GOAL agents de-
rive their choice of action from their beliefs and goals by means of condition-
action rules.

We have found that it is quite important to pay attention to the predi-
cates used to represent the environment in Prolog. This is important to en-
sure readability of the program code and for performance reasons. Our initial
representation of the map, for example, by two different predicates that were
used for separately storing information about nodes and edges turned out to
decrease performance.1 We replaced this representation for another repre-
sentation in which the id of a node, its value, and a list of outgoing edges is
stored by means of a single predicate. This representation increased in partic-
ular the performance of queries that retrieved the neighbors of a node. But
more importantly, by using this representation a significant reduction in the
size of the belief base of an agent has been realized.

GOAL is distributed with a complete IDE for programming, testing and
debugging a multi-agent system. The platform fully supports the Environ-
ment Interface Standard [Behrens et al., 2010b]. This allowed us to focus com-
pletely on the strategic aspects of the contest and we did not have to spent
time on lower-level details, such as sending actions to and analyzing the
XML files that are received from the simulation server.

The complete system (i.e. MAS and environment interface) was run on a
single high end machine. Development on a single machine has been eas-
ier. We have considered whether we should distribute the MAS on multiple
machines, which is supported by GOAL, mainly for performance reasons. Be-
cause our MAS turned out to be efficient enough to run it on a single ma-
chine, we have not investigated this possibility any further.

3.2 Agent Structure

GOAL agents execute a classic Observe-Decide-Act (ODA) cycle. At the start
of each reasoning cycle of a GOAL agent, all percepts are collected and pro-
cessed. Our agents start a new cycle after receiving information from the sim-
ulation server that a new round has started. After processing the percepts,
agents process the messages that they have received. GOAL provides various
built-in actions for updating an agent’s state. The basic idea of processing
percepts first and thereafter messages is that what the agent has observed it-
self then can be used to verify the information received through messages.
GOAL provides a special module for processing events such as percepts and
messages which is called the event module. After processing all events in or-
der to ensure the agent’s mental state is up-to-date again, the agent proceeds

1 We could trace performance of Prolog queries by means of the logging functional-
ity provided by GOAL.

111 Technical Report IfI-12-02



with deciding what to do next. This choice is made by evaluating condition-
action rules which are part of the agent program. These action rules are trig-
gered in another module called the main module which is executed after pro-
cessing the rules in the event module has finished. When a choice is made,
the choice of action is subsequently sent to the environment.

GOAL agents are sets of modules. There are three types of modules that
have a special role, including the event and main module mentioned above
and a third module called init module for initializing the agent. A program-
mer, however, can add as many modules as he needs. For example, code re-
lated to communication, percept handling, navigation, as well as role spe-
cific tasks have been placed in separate modules. The main benefits of the
use of modules are that it significantly reduces the chance of code duplica-
tion and that it facilitates multiple programmers to each focus on a specific
part of the code while still maintaining a clear overview of the overall struc-
ture of the MAS.

Every agent in our MAS has a similar structure. In order to prevent version
problems and code copying, we decided to make one master agent which can
handle all different roles. By using an organization of code that is very simi-
lar to the Strategy design pattern, each agent uses role specific modules while
sharing standard modules related to e.g. navigation. One shared main mod-
ule deals with all the role-independent information and strategy choices that
are common to all agents. This includes, for example, the processing of per-
cepts that are received from the environment, basic communication, and
navigation tasks. The function of our main module is to connect all the smaller
sub-modules and jump back and forth between them. Once all the common
tasks have been executed the main module checks the role of the agent in
question and selects role-specific modules that handle all tasks and decisions
that concern that specific role. We can see the module selection happening
in code snippet 1 displaying the main program section for the agents. The
first condition checked is that no action has been selected yet this round, if
an action has been execute the program section will be done. Next the agent
checks if it is disabled right now if so it will start the disabled module. Next
the agent checks if we control the whole map because if we do we will not
have to swarm but can do other things. If this is not the case the role specific
module of the agent is run and if this still does not yield an action it will go
explore. The total program code consists of 1758 lines of code spread over 18
files.

4 Strategies, Details and Statistics

The strategy of our MAS distinguishes two phases. In the first phase, dis-
cussed mainly in Section 4.1, agents do not yet act as a team. This corre-
sponds to the initial state of the game in which agents are randomly placed
on the map. In the second phase, agents act as a team in order to occupy
high valued zones on the map. This phase is discussed in Section 4.2. As path
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program {

%Only try to find a new action when one was not chosen in this step yet

if bel(not(doneAction)) then {

%If disabled get yourself fixed as soon as possible

if bel(disabled, not(role(’Repairer’))) then disabled.

%Perform specific behavior when we have the entire map

if bel(allMapAreBelongToUs) then superioritySelect.

%Enter your role specific module to do something useful with your role

if bel(role(’Repairer’)) then repairerAction.

if bel(role(’Inspector’)) then inspectorAction.

if bel(role(’Explorer’)) then explorerAction.

if bel(role(’Saboteur’)) then saboteurAction.

if bel(role(’Sentinel’)) then sentinelAction.

%Aparently you had nothing role specific to do, so do some exploring

if bel(true) then explore.

%Otherwise skip (should never happen)

if bel(true) then skip.

}

}

Code 1: The main program section of HactarV2 agents. This section is run
each turn and decides what modules will be used this turn. Options are
checked linear. (Lines beginning with % are comments.)
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planning is quite important in the game, we discuss our approach to finding
routes on the map separately in Section 4.3.

4.1 Individual Agent Strategy

At the beginning of a game all agents move and act on their own. Per role a
different strategy has been designed. We also designed defensive strategies for
each role and a buying strategy which we discuss at the end of the section.

The goal of an explorer agent at the start of the game is to find the highest
valued node on the map. We call this node the optimum. This strategy works
because the map generator produces maps that have one cluster of higher
valued nodes at the center of the map. Once the optimum is found, the name
of this node is sent to the other agents and a swarm can be formed to occupy
the zone around this node. The first phase ends when the optimum has been
found.

The strategy of an explorer for finding the optimum consists of the fol-
lowing rules of which the code can be seen in code snippet 2. If the node
at which the explorer is located has not yet been probed, an explorer agent
will first probe it. Similarly, if the edges going out of the node have not been
surveyed, an explorer agent will survey these edges. Moving to another node
depends on the value of this node and that of neighboring nodes. The agent
will go to a node that has not yet been probed only if the current node has a
lower value than the last visited node and that node is connected to the cur-
rent node and the last visited node. Otherwise the agent will go back to the
last visited node. There is one exception to this rule. If there is a neighboring
node which has a higher value than this one (which was found by the other
explorer), the agent will go there. The agent will also try to go to a neighbor-
ing node that is not close to a (potentially) dangerous opponent. If there are
no safe nodes, the agent will take a chance and go to a potentially dangerous
node anyway. The agent will conclude that the optimum has been found if
no move can be made according to the previously outlined rules. This con-
clusion may not always be right (the algorithm outlined is not perfect) but
works pretty well in practice.

Once the optimum has been found, an explorer agent will join the other
agents and start swarming as a team around the optimum. It will continue
to go to and probe nodes when nearby nodes are found that not yet have
been probed. Doing so allows it to find even higher valued nodes than the
node that is currently believed to be the optimum. If it finds a new optimum,
the agent will inform the other agents. The action selection rules for these
decisions can be seen in code snippet 3. The first option is that the agent is
not in the zone anymore so it will have to head their. The next option is that
it is in the zone and a node in the zone has not been probed yet so it will
got their to probe it. If neither of these options are applicable it will go into
normal swarm behavior.

As a defensive strategy, an explorer basically will try to run away as quickly
as possible from nodes it considers to be unsafe. A node is considered to be
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%go into defensive mode if it is not save here

if bel(not(noFlee), currentPos(Here), not(safePos(Here)))

then defense.

%Probe your node if it is unprobed

if bel(currentPos(Here), needProbe(Here), me(Name), team(Team),

findall(Agent,

(visibleEntity(Agent,Here,Team,_), role(Agent,’Explorer’)),

Agents),

agentRank(Agents,Name,Rank) )

then selectProbe(Rank).

%Survey edges with unknown weight around the current node if any

if bel(currentPos(Here), needSurvey(Here), agentRankHere(Rank) )

then selectSurvey(Rank).

%If in optimumZone and walking to optimum, then stop moving

if bel(inOptimumZone, optimum(Opt), gotoPath(L), last(L, Opt),...)

then cancelMove + swarm.

%Move to a location on the map.

if a-goal(currentPos(X)) then move.

%If optimum has not been found yet go look for it.

if a-goal(optimum) then searchOptimal.

%Otherwise do swarm move

if true then swarmProbe.

Code 2: The main decision making code for the explorer role. The program
goes through the options in a linear fashion.(Lines beginning with % are
comments.)
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%Get back to buddies if not in the zone, dont stray away from the group

if bel(not(inOptimumZone), optimum(X), currentPos(Pos),

path(Pos,X,[Here,Next|Path],_))

then adopt(currentPos(X)) + insert(gotoPath([Next|Path]), noFlee) + move.

%Find the closest unprobed node in the optimum zone, and go there

if bel(currentPos(Start), pathClosestNonProbed(Start,

NonProbedVertex, [Here,Next|Path], Dist),

verticesNearOptimumZone(Vertices),

member(NonProbedVertex, Vertices))

then advancedGoto(Next) + insert(gotoPath([Next|Path]), noFlee)

+ adopt(currentPos(NonProbedVertex)).

%Nothing to probe, participate in swarm

if true then swarm.

Code 3: The action selection code for an Explorer agent while it is in swarm
mode.(Lines beginning with % are comments.)

unsafe if on that node an opponent agent is located that is a saboteur or the
role of that agent is unknown. All other nodes are considered to be safe. Ex-
plorer agents will only move to safe nodes.

A sentinel moves on the map using the same exploration strategy as dis-
cussed above. It tries to keep its distance from (potentially) dangerous oppo-
nents. After an explorer finds a zone worth defending around the optimum,
the sentinel will go there as well, join the other agents, and start swarming
around the optimum. We experimented with sentinels that bought a lot of
sensors in order to be able to see a large part of the map. But we discarded
this strategy for the sentinel because it is very expensive and did not seem to
benefit the performance of our MAS.

As a defensive strategy, a sentinel will parry when an opponent saboteur
is present on the same node. The idea is that in this way, if the saboteur at-
tacks, our team can gather parry achievements. If the role of an opponent
agent is unknown, a repairer will also initially parry. However, when the first
parry turned out to be unnecessary, with a 50% chance, a sentinel agent will
ignore opponents with unknown roles on the same node. Moreover, in case
multiple agents are defending against one opponent saboteur, agents will
leave the node with a 50% chance whenever their parry was useless. This
50/50 choice prevents that one opponent saboteur will keep multiple agents
busy on a node.

The inspector uses the same basic exploration strategy and swarming be-
havior that most agents use. The main difference is that the priority of an
inspector agent is to inspect opponents that have not been inspected yet.
After doing so, the information obtained is shared with all other agents. In
addition an inspector will repeatedly inspect an opponent saboteur every 50
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rounds. This enables the saboteurs from our MAS to keep track of the state of
opposing saboteurs.

As a defensive strategy, an inspector will run away if the opponent agent
is known to be a saboteur. However, if the opponent agent is unknown, it
will move towards it to inspect it.

Agents that are disabled will ask for help from a repairer agent. Disabled
agents will move towards the repairer that is closest after informing it that
the agent wants to be repaired by the repairer. If a repairer is not already com-
mitted to another agent, it will also start moving towards the disabled agent
that requested for help. Whenever a repairer gets a request to repair another
repairer, however, it will drop its current commitment and start to move to-
wards that repairer. A repairer will also drop its current commitment when
it gets disabled itself and start moving towards the other repairer. Disabled
agents send a path to the repairer they are moving to, to prevent the repairer
from having to calculate a path towards the disabled agent and to save time.

Repairers use exactly the same defensive strategy as sentinels.
The saboteurs start the match in search and destroy mode. They receive

information from all agents that is useful for locating opponent agents. They
will move towards a last known location of an opponent agent that is closest
to their own position and attack that agent. While testing we found that this
often resulted in the opponent having fewer agents available at the start of
the game which reduced the effectiveness of our opponent.

When the saboteur has decide to attack someone it will use the module
saboteurAttack to accomplish the attack. The cod of this module is given in
code snippet 4. If the target of the attack is on the same node as the saboteur
it will be attacked except if the target successfully parried the attack of the
saboteur last turn and another enemy agent is present it will attack the other
agent. If it can not attack the enemy on the same node it will recharge. If the
target is on another node the saboteur will head for that node.

Buying can be important during the game but we consider achievement
points to be more important. Therefore our buying strategy is designed to
keep our achievement points as high as possible and to spend less money
than the opponent does. As the amount of money available has quite an im-
pact on the points that are scored each round, we decided to only upgrade
our saboteurs.

The upgrading of saboteurs is aimed at ensuring two things: (i) our sabo-
teurs have 1 health point more then the highest strength of any of the oppo-
nent saboteurs and (ii) the strength of our saboteurs is equal to the highest
number of health points of any of the opponent saboteurs. If both of these
goals are realized, then our saboteurs will survive a blow of an opponent
saboteur while destroying them in a single hit.

We start buying upgrades for saboteurs immediately so that they are bet-
ter then our opponents from the start. After that we wait for input from the
inspectors about the opponent saboteurs before upgrading further. Very im-
portant is that we will always attack opponent agents at our own location

117 Technical Report IfI-12-02



module saboteurAttack(ID,Vertex){

program{

% Attack target if on this location.

if bel( currentPos(Vertex) ) then {

%If your last attack action was at the same target who parried

%and there is another active target hit the other instead

if bel( lastActionResult(’Parried’), lastAttacked(ID),!,

enabledEnemyHere(AID), AID \== ID ) then attack(AID).

if true then attack(ID).

if true then recharge.

}

% Goto vertex with enemy agent.

if true then advancedGoto(Vertex).

}

}

Code 4: The module show what the saboteur does when it has decided to
attack something. (Lines beginning with % are comments.)

before upgrading. This prevents opponent saboteurs from interrupting our
agents and also interrupts whatever the opponent agent is doing. As a result
our score is lower than that of our opponents in the first 100 or so steps but
this investment pays off in the remainder of the match; this effect can be
clearly seen in Figure 1.

An assumption we have made is that the opponent team gives higher pri-
ority to upgrading saboteurs than to upgrading other roles. But even if this
assumption would not be true, the idea is that upgrading of other roles is not
that important because our saboteurs cannot be attacked by these roles.

Saboteurs do not have a “defensive” strategy but will always attack be-
cause they are designed to be superior to the opponents agents.

4.2 Swarming Strategy

When explorer agents have found the optimum (i.e. the node with highest
value) and all other agents have been informed about this, these agents will
start moving towards the optimum. Because all map information is shared
between agents, the probability that each agent will be able to find a path to
the optimum is quite high. If an agent is not able to find such a path, it will
continue surveying edges until it finds a path to the optimum. Finding an
optimum moves the game to the second phase in our strategy. We call this
phase the swarming phase.

In figure 2 we show what the result of swarming looks like during a game.
The HactarV2 agents have formed a zone around the high value nodes in the
center. In figure 2 this is the group of almost black nodes. To the upper right
of the HactarV2 zone is the zone created by the agents of the opposite team
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Fig. 1. Scores HactarV2(Gray) vs TUB(Black)

which are colored gray in figure 2. They are forced to built their zone away
from the high value nodes and because of this are at a clear disadvantage.

In order to explain the behavior of the agents when they enter the swarm
phase, we call this behavior swarming, we introduce several concepts. An agent
that is part of our team is said to be dependable if that agent can effectively
participate as a team member in the swarming behavior. Other agents can
derive (predict) whether an agent can be depended on because the roles of
all friendly agents are known and all of our agents use similar code. These
facts allow other agents to predict what kind of action another agent will
perform in the next round and to derive from that whether that agent will
be dependable.

Agents that are located on the same node are ranked and assigned a unique
number called the agent’s rank. This rank is used when multiple agents are
predicted to perform the same action. In that case, based on their rank it
is decided which agent will perform that action; the other agents will then
perform another action. This rank-based mechanism allows agents to divide
tasks among themselves without the need for communication while at the
same time ensuring that each agent performs a unique action whenever pos-
sible.

Another concept we use is that of one agent being connected to two other
agents. A link between two agents is said to exist if there are at most two edges
that connect the nodes on which these agents are located and these nodes
are owned by our team. An agent is said to be connected if that agent has links
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Fig. 2. The swarm created by HactarV2 in the middle with opponents push out of the
center.

with at least two other dependable agents. The nodes that connected agents
are located on are called swarm positions.

The zone of nodes which is owned by our team and contains the opti-
mum is called the optimum zone. All agents maintain a list of nodes that are
part of this zone as well as a list of those nodes that are just outside this zone.
An agent is said to be inside the optimum zone if the node that the agent is
on only has edges to nodes that are part of the optimum zone. An agent is
said to be on the edge of the optimum zone if the agent is on a node that is
part of the optimum zone that is connected to a node that is not part of that
zone.

While moving towards the optimum zone the agents will constantly check
if they are already in a swarming position that is part of that zone. If that
is not the case, they will continue moving towards the optimum zone. All
agents that try to become part of the swarm intend to be within the opti-
mum zone. This means that our MAS will create at most one swarm.

The main action selection code for when an agent is in the optimum zone
can be seen in code snippet 5. It shows that once an agent has arrived in the
optimum zone, the agent will determine the highest valued node directly
outside the optimum zone and move towards that node. By using this tactic
the swarm will always expand in the direction of the highest valued nodes
not yet owned by our MAS. When the agent reaches a position on the edge
of the swarm it will consider all nodes it can move to. In addition it will pre-
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dict to which nodes its connected agents may want to move. Based on this
information, an agent can determine without communication if it can make
the best move compared to any of the agents it is connected to. If that is the
case, an agent will move to expand the zone, and otherwise it will stay on
its current node in order to ensure that the agents will still be connected.
(To ensure connectedness it is not required that only one agent moves to ex-
pand the zone and we can use the agent rank discussed above to determine
which agents can move. We do not discuss the rather complicated details
here, however.)

If for some reason an agent is no longer connected with agents in the op-
timum zone, it will start moving back towards the optimum until it recon-
nects to agents that are part of the swarm. Using this set of rules we obtain
a very robust swarm. They allow agents to hook up with the swarm but also
allow agents with more urgent tasks to leave without disturbing the swarm
area too much.

program{

%If surrounded by swarm move to the edges

if bel(insideZone, edgeDest(List), agentRankHere(Rank))

then moveSplit(Rank, List).

%Make a list of swarm positions and get my current rank

if bel(expandDest(List), List = [[Value, Vertex]|_], me(Id),

agentRankHere(Rank))

then{

%Taking other agents into acount choice optimal location to go to

if bel(not((connectedAgent(Id, Agent), currentPos(Agent, Pos),

bestExpandDest(_, Value2, Pos), Value2 >= Value)))

then gotoSplit(Rank, List).

%Lower rank if not leader and choice destination

if bel(not(kingOfTheHill), Rank2 is Rank-1)

then gotoSplit(Rank2, List).

%In optimum zone but not on a swarm position so not being usefull

%Move back to optimal position and try again

if bel(currentPos(Pos), not(swarmPos(Pos)), optimum(Opt),

path(Pos, Opt, [Here,Next|Path], _)) then advancedGoto(Next).

}

%otherwise take the recharge action.

if true then recharge.

}

Code 5: The program section of the swarm module. When the agent is ac-
tively part of the swarm it will follow these instructions. (Lines beginning
with % are comments.)
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If our zone is being threatened by opposing agents our saboteurs will de-
fend it. Opponent agents are considered threatening if they are not disabled
and located at a node that is just outside the current optimum zone. While a
saboteur defends the zone it is no longer considered to be dependable. That
way the swarm will not be disrupted by unpredictable movements from the
saboteur. If a threatening opponent agent moves away from our current zone
before it is attacked, the saboteur will become part of the swarm again. Sabo-
teurs that take part in the swarm will not actively look for or attack opponent
agents. This is consistent with our main strategy: to ensure that the MAS oc-
cupies the optimum zone and the opponent agents cannot occupy a zone
that is worth more points.

Especially when the opposing agents had a very similar strategy that in-
volves capturing nodes with the highest values it is difficult for our agents to
occupy and maintain a large optimum zone. In these games the points that
are obtained by achievements can determine the difference between win-
ning and losing. Attack and parry achievements yield the most points while
the inspect achievement yields the fewest points. Probed and zonescore achieve-
ments typically also yield few points except when agents occupy almost the
entire map. Therefore, we decided to focus on attack and parry achievements.

4.3 Path Planning

In principle our agents do not plan actions in advance. Agents decide every
reasoning cycle which action to perform based on the rules that are part of
the agent program. Path planning is an exception to some extent because
an agent will compute a path to move from a node A to another node B. So,
an agent plans at most n rounds ahead where n is the length of a path that
is followed. Following a path, however, can quite easily be disrupted if an
alternative action is considered a better option.

The path finding algorithms we have used are based on an implementa-
tion of Dijkstra’s shortest path algorithm in Prolog that is available on the
web [Barker, 1999]. Our agents use seven, slightly different versions of this
algorithm. These versions differ from each other in what they aim for. The
most basic version simply searches for a path between two nodes A en B. But
we also have versions for finding a path to the closest non-probed node or
non-surveyed edge. Yet other versions search for a path to the closest repairer
or closest opponent agent.

5 Conclusion

We have enjoyed the Agent Contest experience very much. It has also taught
us various valuable lessons. Maybe the most important thing that we have
learned from participating in the Agent Contest is that the continuous test-
ing of a MAS can greatly help to improve the effectiveness of that MAS. We
became particularly aware of this after the initial testing against the dummy
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agent team (agents that performed skip actions) resulted in basic strategies
that also worked against teams developed by other groups.

A second lesson that we have learned is that the design of the structure
of an individual agent and the MAS can make a big difference during the
development of a MAS. We benefited in particular from the module con-
cept that is supported by GOAL[Hindriks, 2009,goa, 2011]. The strategy asso-
ciated with each role has been coded in a separate module and there are ded-
icated modules for functions such as navigation and communication that
are shared by agents. This greatly facilitated dividing coding tasks within
the team. Maintaining a clear and concise documentation of the system has
also been important in this regard. We have documented in particular the
ontology used and shared by all agents. The ontology documents all predi-
cates used to represent the beliefs, goals, percepts, actions, and knowledge
rules of agents and briefly explains the meaning of each predicate and how
its parameters should be instantiated. The ontology facilitates keeping track
of what everyone is doing and has saved us a lot of time.

We believe that the key strength of our MAS resides in the performance
of our saboteur and repairer but also in the manner our agents team up and
form quite robust swarms. The buying strategy of our saboteur has also been
quite effective. The final contest, however, also demonstrated some points
that still can be improved. For example, we observed that sometimes both
saboteurs attacked one and the same target and that our swarm sometimes is
not as robust as it should be.

Our MAS performed very well and we won the Agent Contest. As men-
tioned above, the strategy of our saboteurs and repairers proved the key to
success. Our saboteurs are aggressive at the start of a game but put on a tight
leash when a swarm is formed to ensure that opponent agents cannot get
their agents near the high valued nodes. Our repairers make sure that as
many agents as possible are active and are able to participate in the swarm.

Mainly because of our buying strategy, we usually start with a lower score
than our opponents. This is made up for, however, when the highest valued
node is found by our agents and we start to gather more and more achieve-
ment points. This is clearly illustrated in Figure 3. In this figure the gray line
represents the score of HactarV2 and the black line represents the score of
the Python-DTU team. For the first 275 steps HactarV2’s score stays below
that of Python-DTU’s but thereafter HactarV2 takes and keeps the lead.

To write our code we used the agent programming language GOAL and
the IDE that is distributed with this language. This was the first time that
GOAL has been used in the Multi-Agent Programming Contest and we are
very satisfied with its performance. We have deviated from some of the guide-
lines for programming GOAL agents for reasons of efficiency but otherwise
GOAL proved to be very suitable for the programming of, for example, the
fast and efficient path planning algorithm that we used.

We think that the Mars scenario is a good and interesting scenario. It
poses some interesting challenges with respect to coordinating agents. We
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Fig. 3. Scores HactarV2(Gray) vs Python-DTU(Black)

believe that scaling up the contest by having more agents would create an
even bigger challenge. Maybe one quite interesting idea is to be able to earn
and dynamically add new agents during the game, for example, based on
certain achievements. More pragmatically, as we discussed above, we have
found testing to be very important for the success of our MAS and we believe
that it is a good idea to start contest wide testing earlier and in phases. In a
first phase - which we think should start about a month before the contest - a
general test to check for and identify possible problems related to establish-
ing a connection and to communication is advised. Thereafter in the second
phase test matches should be organized that allow teams to test their strate-
gies.

We also think that adding local optimums in the map would make the
contest more interesting. This would require more complicated strategies for
swarming and would provide a bigger challenge for the exploration of the
map. Finally, we think it would be a good idea to add an extra achievement
that promotes the cooperation of agents. This achievement should not re-
place the achievement for the area that is controlled but would count the
number of agents that share a connection each turn and sum this amount
over all turns. This would reward teams whose agents cooperate above teams
whose agents move around individually.
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Short Answers

Introduction

1. Different team members had different motivations but generally speak-
ing everyone was interested in coding agents for games.

2. All students that participated in the team either assisted with the multi-
agent systems project or participated in that project. In this project, stu-
dents have to program agents that control bots in the first-person shooter
game Unreal Tournament. The MAS project is part of the first-year bach-
elor curriculum at Delft University.

3. HactarV2

4. All six student members of our team contributed to developing and de-
signing our MAS. All students were first-year or second-year Bachelor stu-
dents.

5. Multi-Agent Systems and Artificial Intelligence.

SystemAnalysis andDesign

1. We did not use any agent-based development methodology. The team
did not have sufficient experience with any of these methodologies.

2. Our MAS uses a decentralized strategy. Our strategy is based on an im-
plicit coordination mechanism where agents predict actions that other
agents will perform and decide which action to perform themselves au-
tonomously, taking these predications into account. Agents exchange
information about edges, nodes, and inspected opponents. Additionally,
there are some messages exchanged between all agents and repairers and
saboteurs.

3. All information about the map such as edge weights and node values
as well as information obtained by inspection about opponent agents is
broadcast to all agents. Other information such as repair requests or in-
formation on locations of opponent agents is communicated only with
agents that make use of this information.

4. Autonomy: By communicating the all map information between all agents,
at some point in time each agent knows the complete map. Using the
map information and information received through percepts, the agent
then decides on which action to perform autonomously. It tries to take
into account what other agents will do while making these decisions.
Proactiveness: GOAL explicitly differentiates between a goal and belief
base. Each agent has beliefs and goals, accompanied by a set of rules for
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reasoning. Using the beliefs in combination with the rules it will con-
clude what actions to perform in order to reach its goals, making the
agent proactive.
Reactiveness: Even when agents are committed to particular goals they
will continuously monitor their environment and interrupt its goal-driven
behavior temporarily. After performing more urgent actions in response
to information received from the environment it will continue with its
goal.

5. Our team consists of multiple agents that each execute their own pro-
gram. Moreover, each agent maintains its own information and there is
no centralized information store nor a central manager that coordinates
the actions of agents. Each agent communicates directly with all other
agents and makes decisions autonomously.

6. Around 500 man hours have been spent on our implementation.

7. Other than some basic strategy discussions on IRC we tried to keep our
design as secret as possible. We have utilized every possible testing op-
portunity that was given to our advantage.

Software Architecture

1. GOAL

2. We used the agent programming language GOAL [Hindriks, 2009,goa, 2011].
GOAL uses Prolog as a knowledge representation language.

3. We used modules to code roles and specific functions that were part of
our design.

4. We used the GOAL agent platform, which our entire team was already
familiar with.

5. We have used the GOAL platform.

6. None

7. Apart from the modules mentioned above, certain features of the IDE of
GOAL which made it possible to insert goals and beliefs manually and to
perform queries on the belief and goal bases of agents were helpful. Other
features included measuring the speed of certain queries and functional-
ity to pause the agents and check their belief and goal bases.

8. Many customized Dijkstra algorithms and a Breadth First Search.

9. We did not distribute the agents on several machines even though GOAL
facilitates this. We felt that our agents should be coded sufficiently effi-
cient to run on a single fast desktop. This would simplify testing and pre-
vent us from spending time on getting a distributed system to run.
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10. Agents receive percepts and messages sent in the previous cycle, process
them, send messages and do an action.

11. The most complex and difficult part of development was keeping the
code as efficient as possible. We solved this by constantly improving our
skills in the GOAL and Prolog programming.

12. 1758

Strategies, Details and Statistics

1. The main strategy of our teams it to occupy the zone with the highest val-
ued nodes. Our team of agents builds a swarm around the highest valued
node on the map. The swarming agents are used to defend and expand
this zone.

2. The only information passed around is information about surveyed and
probed nodes, as well as inspected opponents and the location of a re-
pairer. Once an agent is disabled it will transmit its position (or rather
the shortest path) to the nearest repairer. Agents also report visible op-
ponents to saboteurs when they think the saboteurs can’t see them.
Agents implicitly coordinate their activities. For example, in order to pre-
vent two agents from performing the same action we implemented a pri-
ority system based on agent ranks. While deciding what to do next an
agent’s rank is taken into account to avoid duplicating actions.

3. All agents perform survey actions. The explorers will try to find the node
with the highest value right from the start and will send information
about this node to all other agents. Agents will then move to this node
and form a swarm. Once a swarm has been established the explorers are
used to probe all nodes inside our occupied zone to increase our zonescore.

4. We use the provided EISMASSIM interface to communicate with the server.

5. Each role implements a different strategy though all will join the swarm
if they do not have a task with a higher priority. See the paper for exten-
sive discussion of these roles.

6. Our explorers search for the highest valued node on the map, assuming
that this node is more or less in the center of the map. See the paper for
details.

7. When our agents have found the start of our zone we conquer it, because
all our agents will go there and form a swarm. If there are already op-
ponents in this area, the saboteurs will attack these. When we have es-
tablished a zone the saboteurs will defend it by attacking any opponents
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that come near this zone. When defending our agents they first check if
the opponent perceived is a known opponent; if the opponent agent is
not a saboteur it is ignored. See for more details the paper.

8. Our agents are able to change their behavior at runtime because they de-
cide what to do next every round. In general at the start of the match the
agents will explore the map and when an optimum has been found they
will change their behavior to start swarming around the optimum. The
trigger here is the broadcast message of discovering said optimum. Re-
pairers and saboteurs will switch from swarming to respectively repairing
an agent and attacking an opponent whenever the need arises.

9. Our path finding algorithms are all based on an implementation of Dijk-
stra’s shortest path algorithm in Prolog which we found on the website of
Colin Barker[Barker, 1999]. We have seven different versions. All versions
use the same basic core of the Dijkstra algorithm, which in essence uses
the Dijkstra greedy rule to determine which node to visit next, but they
differ in that they all try to achieve something else. We have a version
that tries to find a path between nodes A and B but we also have versions
for finding a path to the closest non-probed node or non-surveyed node.
Yet other versions find a path to the nearest repairer or nearest opponent.

10. Since money has quite an impact on how many points you get per round
we decided to only upgrade our saboteurs in such a way that they will
always have 1 more health point than the highest strength of the oppo-
nent saboteurs. The strength of our saboteurs will always be equal to the
highest health point of the opponent saboteurs. This way they will be
able to survive one blow of an opponent saboteur while disable them in
one hit.

11. Since the accumulation of achievements can account for a large part of
the score, we focused on gathering all achievements. This, for example,
is the reason that our agents do not flee, but prefer to parry.

12. Yes

13. They share information about those nodes that have been fully explored,
about probed node values and their own location in certain situations.

14. The organization is implicit. Each agent has it’s own (slightly) different
behavior and all organization derives from their own behavioral patterns
and inferences about the other agents.

15. The behavior is emergent on an individual level. Agents share a few goals
as a team but mainly derive what to do next from their own beliefs about
the environment and their knowledge about what other agents may do.
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16. Generally each step a re-evaluation of the agents actions takes place. Only
when trying to reach specific locations some actual planning takes place.
In that case, a path is computed to get to some location on the map.

Conclusion

1. We found that testing is very important. Additionally, we found that a
modular organization of code and maintaining clear and concise docu-
mentation is very beneficial for working as a team.

2. Our team has multiple strong points but the most important are: Our
buying strategy, swarm location selection, the usage of our saboteur and
the interaction between the repairer and disabled agents. Important weak
point are that our swarm can sometimes to easily be disrupted and that
our saboteurs have a tendency to go after and attack the same target.

3. We found GOAL a very suitable language to use for the multi-agent con-
test. It provided us with all the functions we needed. The used path plan-
ning algorithm is fast and efficient enough that it could be used without
having to worry about time constraints.

4. We found that testing our MAS was very useful. It might be considered
to start testing earlier and maybe in phases. In an initial test only the
connection and communication with the server can be tested. This gives
teams time to fix any issues with this before the actual contest. After this
test, actual matches can be played to let teams test their strategies.

5. Our team preformed as well as it did because we made sure all separate
parts were robust and dynamic. We paid extra attention to the saboteur
and repairer roles as we were convinced that a key to success is to maxi-
mize the number of active agents on our team and minimize the number
of active agents on the opposing side. These two ideas combined with our
optimized swarming system gave us the ability to outperform our oppo-
nents.

6. Compiler construction and Algorithms.

7. To make the contest more interesting, one idea is to add local optimums.
This would add an extra challenge to the exploration of the map because
the agents would have to make sure they have found the actual optimum
and not just a local one. Another idea would be to be able to “earn” new
agents dynamically during the game based on e.g. certain achievements.
Finally, an achievement for swarming behavior could stimulate coordi-
nated behavior of agent teams.

DEPARTMENT OF INFORMATICS 130



Nargel: AMulti-Agent System Implemented
throughMaSE and JADE

Vahid Rafe, Majid Fandrousi, Rosa Yousefian, Sina Hamedheidari

Department of Computer Engineering, Faculty of Engineering
Arak University – Arak 38156-8-8349, Iran

v-rafe@araku.ac.ir, m-fandrousi@arshad.araku.ac.ir, r-yousefian@arshad.araku.ac.ir,
s-hamedheidari@arshad.araku.ac.ir

Abstract. For this year’s multi-agent contest, finding water storages
on Mars, we developed a decentralized Multi-Agent System (MAS) named
”Nargel”. In this paper, we present the agents’ architecture as well as
the methodology, team strategies, coordination and cooperation mech-
anisms which are used to design and implement the Nargel. To design
the Nargel, MaSE methodology is used while for implementing our MAS,
the JADE platform along with the Java programming language is used.
In Nargel, there is no supervisor. In fact, agents share their percepts
with each other. Additionally, coordination and cooperation are done
with the help of agent speaking mechanism which is provided by the
JADE platform.

Keywords: Multi-agent systems . MaSE . JADE . Agent speaking

1 Introduction

The color of planet Mars resembles bloody war scenes. So that, ancient Baby-
lonians called that ”Nargel”, the God of war [nar, ]. Because this year’s con-
test took place on Mars and it was a battle of life (finding water), we had cho-
sen ”Nargel” as our team name.

The motivation to participate in this contest was about doing a project
for advanced software engineering course. As in developing multi-agent sys-
tems there are many challenges, hence we decide to contribute to this con-
test to develop a multi-agent system.

All the team members except the first author are MSc Software Engineer-
ing students. The first author is an assistant professor. Actually, he is the team
supervisor. He has also contributed in the last year tournaments [Rafe et al.,
2011] and we were made familiar with this contest by him. At first, there were
six members in the team, but during the design phase two of them left and
the rest (four members) continued the work. Our team consists of two de-
signers, one developer and one supervisor.
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2 SystemAnalysis andDesign

Obviously the most significant concept in multi-agent systems is decentral-
ization of information and cooperation between agents. It means that if an
agent affords all tasks about keeping information and leading the agent co-
operation, the other agents cannot act autonomously. For this reason, our
aim is to develop a decentralized system in which agents behave autonomously.
To do so, each agent has a local world model which stores its percepts and
tries to cooperate with other agents to reach a common goal.

Our system agents are autonomous and behave individually, but in coop-
eration with each other. All behaviors are directed to the main goal of the
system.

Also, our agents are proactive. In fact, the agent must decide how and
when to do a special job. Escaping from a perilous situation is a simple ex-
ample of proactiveness in our system. In Nargel when an agent sees an oppo-
nent agent on a neighbor node knows this situation as a dangerous situation
and escapes from that.

The agents are also reactive, such that they can react upon the oppo-
nents actions. For example when there is an attack, they can react and de-
fend themselves against the opponents.

The MaSE (Multi-agent Systems Engineering) methodology was used to
analyze and design our system. MaSE is a full-lifecycle methodology for ana-
lyzing, designing, and developing MASs. MaSE uses a number of graphically
based models derived from standard UML models to describe the types of
agents in a system and their interfaces to other agents [Bergenti et al., 2004].

In a nutshell, the general operation of MaSE methodology is divided in
two phases: analysis and design. Each phase has some diagrams but the most
important ones are Goal hierarchy, Role model for the analysis phase and
System architecture for the design phase. Our system goal hierarchy diagram
is shown in Fig. 1.

Get Maximum Points

Manage Connection

Connect to server

Reconnect

Defend RepairGame termination

Sabotage Rivals

Agent Corporation Agent Coordination

Inspect Vertices

Get Money Aliveness Act in time Occupy the best Zone

Fig. 1. goal hierarchy diagram.
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To create this diagram, we studied this year’s scenario perfectly. Then, we
extracted the requirements from it and finally, we defined and created our
goal hierarchy based on the extracted requirements. In this diagram, goals
are abstractions of the detailed requirements. In the next step of the analy-
sis phase we defined roles and created role model based on the goals in the
goal hierarchy.The role model is the most important diagram in the analysis
phase. Indeed, the role model indicates the policy of design and implemen-
tation of the system. The role model and system architecture diagrams of our
system will be explained in the rest of the paper.

MaSE is the basis for the agentTool development system. The agentTool is
a graphically based, fully interactive software engineering tool, which fully
supports each step of MaSE analysis and design. The agentTool also supports
automatic verification of inter-agent communications, semi-automated de-
sign, and code generation for multiple MAS frameworks. MaSE and agent-
Tool are both independent of any particular agent architecture, program-
ming language, or communication framework [Bergenti et al., 2004].

Unfortunately, we couldn’t complete the MaSE phases for this project. So
we lost the opportunity of using agentTool to produce codes from models.
In this project we worked on most important models such as goal model and
role model, and programmed the concepts introduced by these models. No
tools were used to program them.

Communication between agents is being done only in early steps of the
match to group and to gather agents in a specific position. In the rest of the
match, each agent interacts with the environment via its related data struc-
tures. Agent communications are done via the agent speaking feature which
is provided by the JADE platform. The JADE handles sending and receiving
messages between agents and we do not deal with its details. We only com-
posed two separate files for each individual agent, which contain the codes
corresponding to sending and receiving messages. Also, we call sending and
receiving methods from the agent code. Since every agent can then speak by
using these two files to its teammates via the JADE platform. There are not
many varieties of messages and just a few messages with simple structure are
used to exchange information. More details about agent communication via
the JADE will be explained in the rest of the paper.

To design and to implement our MAS we did not consult anybody out of
our team. Also, our team members spent totally about 500 hours to design
and develop Nargel. Before the tournament we tested Nargel during some
matches with HempelsSofa, Sorena and two dummy systems provided by the
organizers. additionally, we participated in all the test matches set up by the
organizers.
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3 Software Architecture

Since we were not familiar with multi-agent programming languages and we
did not have enough time to learn them, so we used Java programming lan-
guage to develop Nargel.

The main architecture concepts of our system are keeping environmental
information and establishing communication between the agents to reach a
common goal. For keeping information, each individual agent keeps neces-
sary information (like information about the environment, the opponents
etc) in some proper data structures. The used data structures are two dimen-
sional matrices for storing environmental information and some variables
for storing temporary data, messages et cetera.

A couple of agents define the goals with the help of each other. Defin-
ing goals and informing other agents about them is done by agent speaking
mechanism. To handle agent speaking we used the JADE run time platform.

About 50 hours were spent to get familiar with that platform and to learn
how to take advantage of JADE’s capabilities and features in our system. Since
the JADE framework is thoroughly implemented in Java, this helped us to
use the JADE facilities in Java without any problem. The JADE platform has
RMA (Remote Monitoring Agent) which allows controlling the life cycle of
the agent platform and all the registered agents. The distributed architecture
of JADE allows also remote controlling, where the GUI is used to control the
execution of agents and their life cycle from the remote host [Bellifemine
et al., 2007]. Our system architecture is shown in Fig. 2.

JADE Message
 Sender Agent

Message
      Sniffer

JADE Message
 Sender Agent

JADE Message
 Receiver Agent

JADE Message
 Receiver Agent

JADE Connection JADE Connection

Agent1’s container Agent2’s container

Action Handler Action Handler

Percept Handler Percept Handler

JADE Connection JADE Connection

ACL Message

Network
 Connection

Network
 Connection

Agent1 Agent2

RMA

ACL Message

Server Connection Server Connection

ACL Communication Channel

Fig. 2.Our proposed architecture.
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Each agent uses a network connection to connect to the MASSim server.
Through this connection it can receive percepts from the server and sends
action to the server. Communication with the server is done by the use of
eismassim package.

Every agent itself makes and runs a sender agent and receiver agent on the
JADE platform in order to speak with other agents. The architecture of JADE
platform is such that there is a specific container for every agent and the
sender and receiver agents which were ran by the team agents are added to
it. In the JADE platform the agents exchange their messages via ACL (Agent
Communication Language) messaging protocol. Through the Sniffer com-
ponent of RMA we can monitor all the transmitted messages between agents
[Bellifemine et al., 2007].

Despite the fact that the agents had capability to run on several machines,
we ran all agents on a single machine because the system workload was low.
Before the main tournament (i.e. during the test matches), our agents had
many problems in sending actions because of the low bandwidth, filtering
restrictions et cetera. But we solved these problems for the main tournaments.
In each step, an agent decides and defines its action according to its previous
knowledge and current percepts. So, the agent reasoning is completely syn-
chronized with receiving percepts/sending actions cycle.

When implementing the system we encountered some hard and time
consuming issues. One was to handle sending actions and receiving percepts.
Due to the lack of time and getting rid of the complexities of this problem
we used the related codes from dummy agents provided by the organizers.
The other concern was about implementing a proper zone making strategy.
We proposed a simple approach to solve this problem. This simplicity caused
that our agents could not make big enough zones during the contest. Addi-
tionally, sometimes enlarging zones destroyed the current zone completely.

Since the contest environment was a graph, the most crucial algorithm
to be used was finding the best path between nodes. To this point we used
Dijkstra algorithm [Corman et al., 2001] which became more applicable as
the contest goes on (environmental information was incomplete in the early
steps of the contest and gradually became complete).

We programmed Nargel system in about 3000 lines which are for both
implementing strategies and agent communication.

4 Strategies, Details and Statistics

Information about the contest graph was being stored in a matrix named En-
vironmental matrix. This information contained the distance between nodes
(i.e. weight of edge between each two nodes). At the beginning, it was as-
sumed that there were no edges between nodes. After a while, when adja-
cent nodes was recognized and distance between nodes was found by the
survey action –which is done by the agents– the environmental matrix was
updated. During the match, this matrix was being used for path finding op-

135 Technical Report IfI-12-02



erations. However, our agents did not analyze the topology of the map. In
addition, each individual agent kept some data structures:

– Visible Vertices: In this matrix every agent keeps visible vertices.
– Visible Edges: In this matrix every agent keeps visible edges. Each entry

contains the source and the destination vertices of an edge.
– Neighbors: Every agent keeps the id of its neighbor nodes in this vector.
– Visible Opponents: In this matrix, position and status (being enabled or

disabled) of the visible opponents is being kept.
– Visible Teammates: In this matrix, position and status (being enabled or

disabled) of the visible teammates is being kept.

In the beginning of the match, two agent groups are created, one for making
and keeping zones and the other for attacking and disturbing the opponent
zones. In order to divide agents to these groups, two saboteur agents inform
each other about the number of teammates they see. Since each group has a
saboteur, the saboteur which sees more teammates joins to the zone maker
group and the other saboteur joins to the disturber group. Then, saboteur1
will announce to the other agents that it belongs to the zone maker group
while the other belongs to the disturber group. two saboteurs decide on spec-
ifying their groups with negotiation via agent speaking and with the use of
environmental information. It is also the case for repairers, that is one re-
pairer which sees more teammates joins to the zone maker group and the
other repairer joins to the disturber group.

Now we will describe the functionality of these two groups in details:
Zonemakergroup: In addition to the saboteur, this group consists of seven
other agents (i.e. two explorers, two sentinels, two inspectors and one re-
pairer which sees more teammates). The saboteur which sees more team-
mates says its current position to other members of this group. In fact, in
this time a planning is done for the entire match, that is, the area of the map
where the team wants to make zones is being specified. Each member keeps
the mentioned position in order to go to that position if it becomes disabled
in the future.

As soon as the message arrives agents try to get to that position. Each
agent for finding the shortest path to the target position uses Dijkstra algo-
rithm and also crosses edges which has enough energy to go from them. Dur-
ing their movement to the target node to gain achievements and to know the
environment better (i.e. graph status), sentinel agents and repairers survey,
two explorers probe and inspector agents inspect the match environment.
This algorithm is shown in Fig. 3.

When an agent reaches that position, it will change its goal to zone mak-
ing. Since then, the agents will behave to reach the new goal. To make a zone
each agent moves to a neighbor node with the following priorities:

1. the node not belonging to our team without any teammate and oppo-
nent
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if (any opponent agent threats) escape to a safer node

if (current energy > 80% of the maximum energy) {

if (the target is a direct neighbor)

goto the target node;

else

path = Dijkstra(currentPosition, target);

//path[0] is the first node. path[0] == -1 means no path found.

if (path[0] == -1) goto a random neighbor;

if (path[0] != -1 and currentEnergy is enough) goto path[0];

}

Fig. 3. algorithm of gathering agents on a specific position

2. the node without any teammate and opponent on it
3. the node without any opponent on it

The used algorithm is illustrated in Fig. 4. Actually, we did not consider the
topology of the graph to find the most valuable nodes for making our zones
on them. One of the reasons of this decision was that the repairer does not
move and other agents must not spread widely on the graph.

In every situation except the threatening one the explorer, inspector and
sentinel agents do their special actions after each move (i.e. explorer probes,
inspector inspects and sentinel surveys). In our repair strategy, the repairer
stops on the specified announced node after reaching to it. Since the two
groups (the zone maker and the disturber) may locate far from each other we
took this strategy. In such a situation if a repairer became disabled, the pro-
cess of repairing it would have been too hard. For this reason, the saboteur
and repairer agents stop on the saboteur’s initial position and did not move
until the end of the match. If an opponent agent wanted to attack the re-
pairer, the saboteur agent would have defended it. When an agent becomes
disabled it calls a path finding function with its position and the repairer po-
sition as its input parameters. This function with having the source node, the
destination node and the environmental matrix produces a possible path
with the minimum cost by the use of Dijkstra algorithm. Then it tries to
reach the repairer and stay there until its health becomes maximum then
it leaves the node and continues its working based on its goal. The repairer
agent will repair each teammate on its node if its health is not maximum.
The most significant advantage of this strategy is that the opponent team
cannot disable our entire agents and captures the whole graph because if the
repairer agent becomes disabled, it still can repair the saboteur agent on its
node. In this way, perhaps in very few steps all the graph can be captured.
Another advantage of being in a fixed position for the repairer is that the
disabled agent needs to call the path finding function just one time to find
the best path. Only in some special situations such as threatening, the dis-
abled agent needs to call the function again because its initial position may
be changed because of the escaping. Otherwise, if the repairer moves, the
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node1 = node2 = node3 = -1;

for (i=0 to the number of neighbors){

dangerous = friendsOnIt = inOurZone = false;

// checking the third priority

for (j = 0 to the number of visible opponents)

if (neighbors[i] == visibleOpponents[j].position){

dangerous = true;

break;

}

if (!dangerous) node3 = i;

// checking the second priority

for (j = 0 to the number of visible friends)

if (neighbors[i] == visibleFriends[j].position){

friendsOnIt = true;

break;

}

if (!friendsOnIt and !dangerous) node2 = i;

// checking the first priority

for (j = 0 to the number of visible vertices)

if (neighbors[i] == visibleVertices[j] and

visibleVertices[j].team == ourTeam){

inOurZone = true;

break;

}

if (!inOurZone and !friendsOnIt and !dangerous) node1 = i;

}

if (node1 != -1) goto node1;

if (node2 != -1) goto node2;

if(node3 != -1) goto node3;

Fig. 4. Zone making algorithm
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disabled agent have to call path finding function every step to find a path to
the repairer position.
Disturber Group: This group consists of one Saboteur agent and one Re-
pairer agent. The reason of choosing these agents is that the saboteur is ca-
pable to destroy opponent’s and when it becomes disabled, the Repairer can
help it. Another reason to choose two agents for this job is that at least two
nodes are needed to make a zone [Behrens et al., 2011]. These two agents
move in such a way that they can make the zone during the path. The sabo-
teur agent waits until its repairer reach to its position. As soon as the repairer
arrives, the disturbing starts. The saboteur agent chooses its next destination
node based on a priority. The priorities are as follows:

1. the node belonging to the opponent in which there is an opponent‘s
agent

2. the node belonging to the opponent in which there is no opponent‘s
agent

3. a random node regarding to its current energy and the weight of the edge

The priority of these movements was adjusted due to their hurting rates.
The algorithm is presented in Fig. 5. If the saboteur agent and an oppo-

nent are on the same node, our saboteur will not move until the opponent
agent becomes disabled. The saboteur agent after each movement waits for
the repairer. The explained strategy is divided into some roles, which are
shown by the role model in Fig. 6. The model in Fig. 6 is produced based on
MaSE notation. Role definitions are captured in a MaSE [Wood, 2000] role
model which includes information on interactions between role tasks and is
more complex than traditional role models. Roles are denoted by rectangles.
Each role is associated with a number of tasks. Tasks are denoted by ovals
attached to the corresponding role. Lines between tasks denote communica-
tions protocols with the arrow pointing from the initiator to the respondent.
Solid lines indicate external communications [Bergenti et al., 2004].
The tasks are generally derived from the goals for which a task is responsible.
For instance, the Zone Aggressor role is responsible for attaining disturbing
goal. Therefore, to accomplish this goal, the role must be able to detect the
opponent zone and to select the best path. Hence, we have created one task
for this role: Disturb.

When an agent, during its movement to a specific node, detects an op-
ponent on the neighbor node escapes to another node that does not con-
tain any opponent. Also, if our agent placed with an opponent on the same
node, our agent would have defended itself with parry action in case of hav-
ing enough energy. These behaviors are emergent on the individual level but
others like zone making or disturbing are important in the team coopera-
tion.

If during a simulation the team reaches to a specified level of zone score
(e.g. 70), the agents will not move and stick to their positions. In other words,
agents try to keep the built zone to reach the zone keeping goal. By this strat-
egy the team can gain this score for some steps. But unfortunately because of
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node1 = node2 = -1;

for (i = 0 to the number of neighbors){

dangerous = inOpponentZone = false;

// checking the second priority

for (j = 0 to the number of visible opponents)

if (neighbors[i] == visibleOpponents[j].position){

dangerous = true;

break;

}

if (dangerous) node2 = i;

// checking the first priority

for (j = 0 to the number of visible vertices)

if (neighbors[i] == visibleVertices[j] and

visibleVertices[j].team == opponentTeam){

inOpponentZone = true;

break;

}

if (inOpponentZone and dangerous) node1 = i;

}

if (node1 != -1) goto node1;

if (node2 != -1) goto node2;

goto a random node;

Fig. 5.Disturbing algorithm
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Fig. 6. The role model.
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not having a perfect and powerful defensive strategy we had two problems.
First one, we could not defend our zones and a few steps after building a zone
we lost it immediately because of opponents disturbing and the second, we
could not make big zones with a lot of nodes. Since during the zone expan-
sion, again the opponents disturbed the zone and broke it down completely.

In the case of our buy strategy, the disturber group agents buy energy.
The saboteur of this group also increases its disturbing power. But we limited
these purchases to get the scores of achievements in the remaining steps of
the simulation.

For all our routing issues such as gathering in an initial position or mov-
ing toward the repairer we used Dijkstra algorithm.

Because of the decentralized development of the team, we did not have
a hierarchical structure or a leader agent. We only had a temporary implicit
hierarchical mood in the early steps of the simulation. In the early steps of
the match, the two saboteur agents behave like a leader to gather the other
agents to make the zone maker and the disturber groups. Since then, there is
no hierarchical structure and leader, instead each agent will do its role au-
tonomously and will corporate with other agents to reach their common
goals.

5 Conclusion

By attending in this year competitions we became familiar with the struc-
ture of multi-agent systems and programs. We got to know the people who
are active in this field. Also, we learned how to design and implement au-
tonomous agents. These competitions also provided an opportunity for us
to learn agent based methodologies and work with special tools to develop
multi-agent systems. Among these the MaSE methodology and the JADE
platform had the most impact.

In the case of the methodology, the tools and the used algorithms to im-
plement our system the only problem was the low runtime speed of the JADE
platform.

Such these competitions provide an appropriate field for multi-agent pro-
gramming [Behrens et al., 2010]. To improve this field and make it more in-
teresting it is better to use software and hardware beside each other as an
agent instead of just software agent because software agents cannot illustrate
real world constraints and problems. Of course this idea forces a geographi-
cal constraint for setting up the contest. Since real environments are not free
from danger for multi-agent systems it is better consider them in the contest
to make it more real and very close to the actual world. For example, in Mars
scenario, it will be more interesting if some nodes are being considered as
holes or pits so that if an agent moves to that node it will be omitted and dis-
appeared from the match. Also, placing some aliens in the environment to
bother both teams can make it more attractive. Team agents should have the
power to kill and learn them. For example an instructor role can considered

141 Technical Report IfI-12-02



to learn an alien and make it as a teammate. Also, it will be more interested
if the buying and increasing the physical properties of an agent be reason-
able (i.e. a level for these items is being considered). Finally, it will be more
challengeable if the environment be more complex (e.g. by increasing the
number of agents), so each team has to distribute on different machines and
should consider high performance algorithms.

The strong points of our team were preventing the opponent from occu-
pying the whole graph and attacking the opponent agents that could be seen
obviously during the matches. However, inability to make the big zones and
defend them due to the lack of a powerful defensive mechanism, was our
team weakness point. Since this year was our first experience to attend in
such competitions and we were not enough familiar with multi-agent pro-
gramming and agent based systems we could not build a perfect system. On
the other hand not having enough time and human resources to build a per-
fect program caused that we did not get good results in this year competi-
tions.

An important point about our team strategy in gathering agents was that,
during their movement to the specified node in the case of facing an oppo-
nent in the neighbor nodes they changed their path by escaping, so they
might become far from the target instead of closing to it. This matter espe-
cially is too crucial for the repairer agent of the zone maker group. During the
matches this case bothered our team too much. Thus, we found that if the
repairers did the grouping task instead of the saboteurs, it would have been
very better because in this case the zone maker repairer would have stayed in
its initial position and the saboteur like other agents would have reach to the
repairer without any serious problem.

But for the next year tournament we are going to gather enough special-
ists, use from powerful tools and languages and spend more time to imple-
ment better strategies.
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Short Answers

1.1 The motivation to participate in this contest was about doing a project
for advanced software engineering course.

1.2 The team was working on a software engineering project.
1.3 Nargel.
1.4 Our team consists of two designers, one developer and one supervisor.

All team members except the supervisor are MSc students.
1.5 Our field of research is Software Engineering.
2.1 The MaSE (Multi-agent Systems Engineering) methodology was being

used to analyze and design our system.
2.2 We developed a decentralized system in which agents behaved autonomously,

kept the environmental information and tried in cooperation with each
other to reach a common goal.

2.3 Agent communications was done via agent speaking feature which is
provided by the JADE platform. JADE handles sending and receiving mes-
sages between agents and we didn’t deal with its details.

2.4 Our agents are autonomous because they can act without any interfere
from a leader and are reactive such that they can react upon the oppo-
nent’s actions and also they have proactiveness because they can predicts
some situations and acts in time.

2.5 Yes, It is a truly multi-agent system.
2.6 Our team spent about 500 hours to design and develop Nargel system.
2.7 No we did not consult with anyone out of the team. We had tested

Nargel system during some matches with HempelsSofa, Sorena and two
dummy systems provided by the organizers and participated in all the
test matches set up by the organizers.

3.1 Java.
3.2 No, because we were not familiar with the multi-agent programming

languages and we did not have enough time to learn them.
3.3 We implemented agent oriented concepts by the JADE facilities in Java.
3.4 We did not use any.
3.5 We used the JADE runtime platform and about 50 hours were spent to

learn how to take advantage of the JADE capabilities and features in our
system.

3.6 There was nothing missed.
3.7 The JADE framework is thoroughly implemented in Java, this helped us

to use the JADE facilities in Java without any problem.
3.8 Dijkstra.
3.9 We ran all agents on a single machine because the system workload was

low.
3.10 In each step an agent decides and defines its action according to its

previous knowledge and current percepts. So the agent reasoning is com-
pletely synchronized with receiving percepts/sending actions cycle.
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3.11 One was to handle sending actions and receiving percepts. To solve
this, we used the related codes from dummy agents. The other was im-
plementing the zone making strategy which we used a simple approach
for that.

3.12 We programmed Nargel system in about 3000 lines which are for both
implementing strategies and agent communication.

4.1 Our team strategy is to consider both making zones and disturbing op-
ponent zones. Actually, we worked on both contexts.

4.2 For keeping information, each individual agent keeps the necessary in-
formation in some data structures. Defining goals and informing all agents
about them is being done by agent speaking mechanism.

4.3 Our agents did not analyze the topology of the map.
4.4 Communication with server is done by the use of eismassim package.
4.5 In every situation except the threatening one the explorer, inspector

and sentinel agents do their special actions after each movement.
4.6 Our agents did not estimate the value of the zones.
4.7 We did not conquer any zones and also we did not defend our zones

against opponent attacks, instead, we attacked the opponent zones.
4.8 No they cannot.
4.9 We used Dijkstra algorithm for all our routing issues.
4.10 The disturber group agents buy energy. The saboteur of this group also

increases its disturbing power.
4.11 We limited the purchases to get the scores of achievements in the re-

maining steps of the simulation.
4.12 No.
4.13 A few messages with simple structure were being used to exchange in-

formation and cooperate. This messaging was done by JADE.
4.14 There is no hierarchical structure and leader, instead each agent will do

its role autonomously and will corporate with other agents to reach their
common goals.

4.15 Behaviors like parrying and escaping are emergent on the individual
level but others like zone making or disturbing are for team benefits.

4.16 At the first of the match a position is being defined from which zone
making begins. Thus a planning is done for the entire match that is the
area of the map where the team wants to make zones is being specified.

5.1 We knew the structure of multi-agent systems and learned how to make
a computer program autonomous and also got familiar with agent based
methodologies and special tools to develop multi-agent systems.

5.2 The strength points of our team were preventing the opponent from
occupying the whole graph and attacking the opponent agents. How-
ever inability to make big zones and defend them was our team weakness
point.

5.3 In the case of methodology, tools and used algorithms to implement
our system the only problem was the low runtime speed of the JADE plat-
form.

5.4 We didn’t saw any defect in this year contest.
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5.5 Because this year was our first experience and on the other hand not
having enough time and human resource to build a perfect program caused
that we didn’t get good result in this year competitions.

5.6 To improve this field and make it more interesting it is better to use soft-
ware and hardware beside each other as an agent instead of just software
agent.

5.7 Some nodes can be considered as holes so that if an agent moves to that
node it will be disappeared. Some aliens can be placed in the environ-
ment to bother both teams. Teams should have the power to kill and
learn them.
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Implementing a Multi-Agent System in
Python

Mikko Berggren Ettienne, Steen Vester, and Jørgen Villadsen?
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Technical University of Denmark

Richard Petersens Plads, Building 321, DK-2800 Kongens Lyngby, Denmark

Abstract. We describe the solution used by the Python-DTU team in
the Multi-Agent Programming Contest 2011, where the scenario was
called Agents on Mars. We present our auction-based agreement, area
controlling and pathfinding algorithms and discuss our chosen strat-
egy and our choice of technology used for implementing the system.
Finally, we present an analysis of the results of the competition as well
as propose areas of improvement.

1 Introduction

This paper documents our solution to the Multi-Agent Programming Con-
test 2011 (MAPC) [Behrens et al.,2011,Behrens et al.,2010] as the Python-DTU
team.

The aim of MAPC is to stimulate research in the area of Multi-Agent Sys-
tems (MAS). It is a returning competition which has been held every year
since 2005. The challenge is to solve a cooperative task in a dynamic envi-
ronment using a multi-agent system. This year’s MAPC presented a new sce-
nario called Agents on Mars in which two opposing teams control 10 agents
and compete to control “zones” of a graph in a discrete time world.

This year’s contest was the 7th edition of MAPC. Every year participants
have stated their implementation language/framework and submitted their
source code along with a short report describing their solution. In 2005 MAPC
was built on a “Food-Gatherers” scenario, 2006-2007 presented a “Goldmin-
ers” scenario and 2008-2010 presented a “Cows and Cowboys” scenario. This
year again presented a new scenario “Agents on Mars” making it unfeasi-
ble to build a solution from earlier year’s implementations. Throughout the
years many participants have used existing MAS frameworks, in particular
Jason [Bordini et al.,2007] and JIAC [Hirsch et al.,2009] which are both open
source and implemented in Java, while other participants have implemented
their own MAS frameworks. Naturally MAS frameworks can be reused in dif-
ferent scenarios and framework experiences from earlier years are worth con-
sidering. We participated in the contest in 2009 and 2010 as the Jason-DTU

? Corresponding author: jv@imm.dtu.dk
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team since we used the Jason platform and its agent-oriented programming
language AgentSpeak [Boss et al.,2010,Vester et al.,2011]. We performed well
but for the contest this year, with the new and more complex scenario, we de-
cided to focus on an auction-based agreement approach and to implement
the multi-agent system in the programming language Python.

Our observation from this and previous years is that because of the com-
plex nature of the scenarios, choosing which strategies to apply poses the
greatest challenge. Compared to that, the actual requirements for a support-
ing framework are not overwhelming which led us to implement our own
framework. While Jason had some immediate benefits, e.g. with regards to
agent communication, we regularly encountered problems where we would
have preferred to have complete control over every aspect of the implemen-
tation. Thus our decision to implement our own framework for this year’s
competition was evident. We chose Python as we think it is in many ways
superior with respect to development speed and succinctness compared to
Java, C#, C++ and other languages that we have experience with. Further-
more Python supports multiple programming paradigms, including the func-
tional, which proved quite effective for this setting. This is also confirmed by
the final implementation which takes up very few lines of code compared to
earlier years and yet proved to be very effective.

We used approximately 400 man hours in total for implementing the sys-
tem and for participating in the official test matches. We discussed agent de-
signs and strategies with other teams during the competitions only.

2 Supplementary Competition Description

The environment can conveniently be represented as a graph with each wa-
ter well being a vertex and an edge e = (u, v) between any two connected
wells u and v. Furthermore we can describe the entities of a game as follows:

– A - The set of agents in the game where |A| = 20.
– T - The set of team names where |T | = 2.
– G = (V,E) - The graph of the game.

Note that each team always consists of 10 agents. A game is then described
by the static mappings:

– team : A→ T , mapping each agent to a team.
– weight : E → {1, 2, . . . , 10}, assigning weights to all edges.
– value : V → {1, 2, . . . , 10}, assigning values to all vertices.

From here it follows that every external state of a game is given by the addi-
tional mappings (the internal states of the agents are not considered in an
external state):

– pos : A→ V , mapping all agents to a vertex in the game graph.
– score : T → N, mapping each team to their current score.
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– money : T → N, mapping each team to their current amount of money.
– zones : T → N, mapping each team to their current zone score.

An agent’s role determines which actions it is allowed to perform, its maxi-
mum health and energy, its strength and its visibility range. The five possible
roles are defined in table 1.

Explorer Actions: skip, goto, probe, survey, buy, recharge
Maximum energy: 24
Maximum health: 4
Strength: 0
Visibility range: 2

Repairer Actions: skip, goto, parry, survey, buy, repair, recharge
Maximum energy: 16
Maximum health: 6
Strength: 0
Visibility range: 1

Saboteur Actions: skip, goto, parry, survey, buy, attack, recharge
Maximum energy: 14
Maximum health: 3
Strength: 3
Visibility range: 1

Sentinel Actions: skip, goto, parry, survey, buy, recharge
Maximum energy: 20
Maximum health: 1
Strength: 0
Visibility range: 3

Inspector Actions: skip, goto, inspect, survey, buy, recharge
Maximum energy: 16
Maximum health: 6
Strength: 0
Visibility range: 1

Table 1. Roles

An agent can increase its maximum energy, maximum health, strength and
visibility range with the buy action. Thus we can use the following mappings
to describe the internal state of the game, i.e. the state of the agents:

– mh : A→ N, mapping every agent to its current maximum health.
– h : A→ N, mapping every agent to its current health.
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– me : A→ N, mapping every agent to its current maximum energy.
– e : A→ N, mapping every agent to its current energy.
– s : A→ N, mapping every agent to its current strength.
– vr : A→ N, mapping every agent to its current visibility range.

And the constant mappings:

– role : A→ {Repairer, Saboteur,Explorer, Sentinel, Inspector},
mapping each agent to a role.

– actions : {Repairer, Saboteur, . . .} → 2{skip,goto,...},
mapping each role to a set of actions.

Furthermore we have ∀a(a ∈ A→ (mh(a) ≥ h(a) ≥ 0 ∧me(a) ≥ e(a) ≥ 0)). In
each simulation step an agent can perform one action. In general there is a
probability of 1 percent that an action will fail. The definitions of all actions
are given in table 2. A failed action has no effect, but will still decrease the
energy of an agent as specified in table 2.

2.1 Scoring

The winner of a game is the team with the highest score when the game ends.
The score for a team t is computed as:

scoret =

steps∑
s=1

(zoness(t) + moneys(t))

Where steps is the number of simulation steps.

Money When a team reaches an achievement, its amount of money is in-
creased by 2. The achievements are distributed in different categories and
money will only be given the first time an achievement is reached. For a team
t the achievements are defined as follows:

– Zone: zones(t) ≥ 10, zones(t) ≥ 20, zones(t) ≥ 40, . . .
– Probing: Probing i unprobed vertices for i ≥ 5, i ≥ 10, i ≥ 20, . . .
– Surveying: Surveying i unsurveyed edges for i = 10, i ≥ 20, i ≥ 40, . . .
– Inspecting: Inspecting i uninspected∗ opponents for i ≥ 5, i = 10
– Attacking: Attacking i opponents for i ≥ 5, i ≥ 10, i ≥ 20, . . .
– Parrying: Parrying i opponent attacks for i ≥ 5, i ≥ 10, i ≥ 20, . . .

Note that attacking or parrying the same opponent multiple times count to-
wards new achievements whereas this is not the case for probes, surveys and
inspects.
∗ However inspecting an already inspected agent a will count towards an in-
spect achievement if either of s(a),mh(a),me(a), vr(a) has changed since the
previous inspection of a.
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For every agent a ∈ A

skip This action will never fail and has no effect.

recharge This action increases e(a) by 50% if h(a) > 0 and by 30% if h(a) = 0.
The action will fail in step s if a is attacked in step s.

attack amust specify the name of an agent b to attack.
The action requires pos(a) = pos(b) ∧ h(a) > 0 ∧ role(a) = Saboteur ∧ e(a) ≥ 2
and will decrease e(a) by 2. If b performs a parry action in the same step
the attack action fails. Otherwise if h(b) ≥ s(a), h(b) is decreased by s(a)
else h(b), is decreased to 0.

goto amust specify the vertex v it wants to go to.
The action requires (pos(a), v) ∈ E ∧ e(a) ≥ weight((pos(a), v))
and will decrease e(a) byweight((pos(a), v)).

probe The values value(v), v ∈ V are initially unknown to a.
This action will reveal value(pos(a)) to a.
The action requires role(a) = Explorer ∧ e(a) ≥ 1 and will decrease e(a) by 1.
The action will fail in step s if a is attacked in step s.

survey The weightsweight(edge), edge ∈ E are initially unknown to a.
This action will revealweight((s, t)) where (s, t) ∈ E for all edges (s, t) where both s and t
are reachable from pos(a) in vr(a) or less steps.
I.e. let k = vr(a), then there exists vertices pos(a) = v0, v1, . . . , vi = s
such that (vj−1, vj) ∈ E for 1 ≤ j ≤ i and i ≤ k.
and there exists vertices pos(a) = u0, u1, . . . , ui = t
such that (uj−1, uj) ∈ E for 1 ≤ j ≤ i and i ≤ k.
The action requires h(a) > 0 ∧ e(a) ≥ 1 and will decrease e(a) by 1.
Again the action will fail in step s if a is attacked in step s.

inspect This action will inspect the internals of all opponents b if pos(b) is reachable
from pos(a) in one or less steps, i.e. (pos(a), pos(b)) ∈ E or pos(a) = pos(b).
The internals are the values given by the mappings describing the state of b.
The action requires role(a) = Inspector ∧ team(a) 6= team(b) ∧ h(a) > 0 ∧ e(a) ≥ 2
and will decrease e(a) by 2. Again the action will fail in step s if a is attacked in step s.

repair amust specify the name of an agent b to repair.
The action requires role(a) = Repairer ∧ a 6= b ∧ e(a) ≥ 2
and will decrease e(a) by 2 and increase h(b) tomh(b)

buy The agent must specify either max. health, max. energy, strength or visibility range
and the chosen parameter will be increased for agent a by 1.
The action requires h(a) > 0 ∧ e(a) ≥ 2 ∧money(team(a)) > 2
and will decrease e(a) andmoney(team(a)) by 2.
Also, to buy strength it is required that role(a) = Saboteur.
Again the action will fail in step s if a is attacked in step s.

Table 2. Actions
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Zones A zone is a connected subgraph with at least two nodes whose vertices
are colored according to section 2.2. The value of a zone Z ⊆ V occupied by
a team t ∈ T is given as

∑
v∈z z val(v) where z val(v) = 1 if v has not been

probed by an agent of team t and z val(v) = value(v) if v has been probed by
an agent of team t. zoness for a team t is the sum of all zone values at step s
for team t. Figure 1 shows an example of zone scoring.

2.2 Graph Coloring Algorithm

In this section the rules for coloring nodes of the graph will be presented. An
algorithm is run every time step to determine which team owns which parts
of the graph. The algorithm runs in three steps as follows:

1. For every vertex v, if team t1 has more agents standing on the vertex than
team t2 then t1 owns v.

2. For every vertex v not owned by a team after the previous step, if team t1
owns more neighbor vertices of v than team t2 after step 1 then t1 owns v.
For this rule to apply however, t1 must own at least two neighbor vertices
of v after step 1.

3. For every vertex v not owned by a team after the previous steps, if team t1
owns a node on all paths π from v to an agent of team t2 after step 1 and
2, then t1 owns v.

In figure 2 we give an example of an application of each rule. Rule 3 is the
most complicated rule to understand, but it can be interpreted by consider-
ing the vertices owned after step 1 and 2 as a frontier of vertices. If there are
any vertices encapsulated within that frontier and no opponent agents are,
then the vertices encapsulated will also be owned by the team having the
frontier. The rules for coloring are very important to understand completely
since the team that is consistently best at obtaining zones of nodes with the
highest value will often be the winner of a match. In our strategy we focus
only on rule 1 and 2, since rule 3 is quite hard to use in practice, especially
when opponents are moving all the time. One of the most important appli-
cations of rule 3 is that if all agents of one team are disabled, then the other
team will own all vertices in the graph since disabled agents cannot be used
for controlling areas. Thus, it is very expensive if one team is completely dis-
abled even if it is only for a few steps.

3 System Analysis and Design

We did not use any multi-agent system methodology because we preferred to
have complete knowledge and control of every part of the implementation.
We chose a decentralized solution where agents shared percepts through shared
data structures and coordinated actions using distributed algorithms. Our
agreement based auction algorithm heavily relies on communication and is
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Fig. 1. An scenario showing zone scoring, reprinted from [Behrens et al.,2011]. Ver-
tex values and edge weights are depicted directly on vertices and edges respectively.
The squares located around vertices are agents of team green or team blue. Accord-
ingly the green team controls the green zone and the blue team controls the blue
zone. Assuming that the blue team has probed all vertices in their zone, the value of
their zone is 25.
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Fig. 2. A scenario showing applications of the three rules of coloring. The vertices
marked with a yellow circle are colored according to rule 1, the vertices marked with
a red circle are colored according to rule 2 and the vertex marked with a purple circle
is colored according to rule 3
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part of how agents decide on goals. Each agent acts on its own behalf based
on its local view of the world.

In the following we describe our decentralized solution to agent coopera-
tion using a distributed auction algorithm.

3.1 The Agreement Problem

Many situations arise where a subset of our agents must cooperate to solve a
task. For example, we use most of our agents to survey the graph in the be-
ginning of every match. To do this our agents need to agree on who surveys
which parts of the graph. In the same way our saboteurs have to agree on
which opponents to attack and our repairers must agree on which of our
agents to repair. Some agents might also be more suitable for a goal than
others (because of special abilities, shorter distance to goal, etc.). We would
like to assign agents in such a way that as many goals as possible are accom-
plished in as little time as possible, since accomplishing goals quickly gives
a higher score. Before assigning goals to agents we start by assigning benefits
to each goal for each agent, such that the benefit of a goal is high if the goal
is important to solve and such that the benefit will be higher the faster the
agent can accomplish it (e.g. the shorter the distance from the agent to the
goal is, taking the energy of the agent into account). We would then hope
to achieve the following properties when designing an algorithm to assign
goals to agents:

1. The total benefit of the assigned goals should be as high as possible. Prefer-
ably optimal or close to it.

2. The running time of the algorithm should be fast, since we need to as-
sign goals to agents at every time step in the competition and still have
time left for other things such as environment perception, information
sharing, etc.

3. The algorithm should be distributed between the agents resembling a
true multi-agent system.

4. It should not be necessary for the agents to have the same beliefs about
the state of the world in order to agree on an assignment.

5. The algorithm should be robust. If it is possible, our agents should be
able to agree on an assignment even if some agents break down or some
communication channels are broken.

The algorithm described in the following is inspired by [Zavlanos et al.,2008,Bertsekas et al.,1991]
and achieves this with some compromises while still satisfying every point
to some extent.

3.2 Auction Algorithm

To solve the problem we use an auction algorithm in which agents will make
bids against each other on the goals that they would like to pursue. The rules
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of the auction will be designed so we can be sure that the algorithm will ter-
minate in a finite number of rounds and that all agents are assigned to differ-
ent goals at termination. Also, the assignment will be near optimal in a sense
that is defined later in this section.

We assume that there are n agents and at least n different goals, such that
there always exists a feasible assignment of a distinct goal to each agent.
It is also assumed that the agents are using a network of communication
channels where all pairs of agents are not necessarily connected at all times.
Though we do assume that the graph of the communication network is con-
nected at all times. When designing an auction each goal i will at a given
time t have a price denoted pi(t). Initially, we let pi(0) = 0 for all goals i. The
price of a goal will be the highest bid made by an agent on that goal (except
when the price is 0). As in a real world auction, agents will now place bids on
the goals which give them the largest net value. Here we define the net value
of agent i for goal j by

net valueij = benefitij − pj

which is the benefit the agent will get from the goal minus the price of the
goal.

In each bidding round, agents place bids according to their local informa-
tion about the current prices. If an agent has not currently placed the highest
bid on any goal then the agent will place a bid on the goal which maximizes
his current net value according to his current knowledge of the prices of the
goals. The highest bid as well as local information about the current prices
and current highest bidders of goals are in each round sent to all neighbour
agents, i.e. agents to which a communication channel exists. In addition
local beliefs are updated according to the prices received from neighbour
agents. If several agents have made the same bid for a goal, the agent with
the highest index will win the goal. The updated values are then used by the
agents to calculate the net values for the next bidding round. Thus, in one
bidding round at time step t the algorithm works by letting each agent i do
the following:

1. Receive the newest prices and owners of all goals. Update the local belief
base if there are higher bids on any of the goals that the agent did not
already know about. This includes updating the net values of the goals.
Also, the agent may have lost a goal it owned in the previous round.

2. If the agent is not currently the owner of a goal, it will place a bid on
the goal j with the highest net value according to its belief base. It does
so by setting itself as owner of j and increasing pj by γ = vi − wi + ε
where vi is the net value of j and wi is the net value of the goal with the
second highest net value. ε is a positive number which is a parameter of
the algorithm that influences the running time and the quality of the
final assignment. Generally speaking, a low value of ε gives high quality
assignments but longer running time.
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An example run is shown in figure 3 where ε = 1 and goal benefits are in-
tegers. This was also the case when we used the algorithm in practice which
gave us a very short running time. In practice we simulated a complete com-
munication network topology by using a shared database of bids between
the agents.

In general the algorithm terminates when n rounds without new bids oc-
curs, in which case all agents have an assigned goal. In our case with a com-
plete communication network, it can terminate as soon as one round with-
out new bids occurs assuming that no communication channels are broken.
For a proof that the algorithm does in fact terminate no matter what choice
of ε > 0 and no matter the choice of structure of the connected communica-
tion network we refer to [Zavlanos et al.,2008]. Here it is also proven that the
algorithm terminates inO(∆n2dmaxi,j{benefitij}−mini,j{benefitij}

ε e) and that the
final assignment obtained by the algorithm is within nε of being optimal.
Here n is the number of participants and∆ ≤ n− 1 is the maximum network
diameter, which is the longest distance between two vertices in the commu-
nication network, which is practically reduced to 1 when using a shared data
structure as we did in practice.

This choice of algorithm gives quite good solutions with respect to max-
imizing total benefit, the running time was no problem during competition
and the computation is completely distributed between the agents. The agents
do not need to share beliefs about the world state, but only need to use their
local belief base to approximate their own benefits for different goals. Finally,
the algorithm will work even if some communication channels break down
which should make the solution more robust than a centralized approach in
some environments.

4 Software Architecture

The competition is built on the Java MASSim-platform and the Java EISMAS-
Sim framework is distributed with the competition files. This framework is
based on EIS [Behrens et al.,2009] and abstracts the communication between
the server and the agents to simple Java method-calls and call-backs. To uti-
lize this framework we started out with the Java implementation of Python
called Jython which in contrast to Python can import Java libraries and classes.

A true multi-agent system allowing distribution of the agents was not
enforced by the competition rules. However we took up this challenge as it
posed some interesting distribution problems as seen in section 3.1. To sup-
port agent communication in our multi-agent system we started out using
the Apache ActiveMQ as a messaging server which offers clients for all pop-
ular programming languages.

Using the EISMASSim Java framework together with ActiveMQ clients
written in Python and glueing it all together with Jython gave some per-
formance issues when exchanging percepts between the agents. We found
that each component performed well when tested in a controlled context
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Fig. 3. An example of an auction between three agents. In round 1 the auction data
structure is empty before the bidding and thus goal benefits are equal to goal net val-
ues. Each agent places a bid on its preferred goal. The bids are calculated as the dif-
ference between the two best goals plus ε. The data structure stores the highest bid
and the corresponding agent for each goal. Both agent 1 and agent 2 bid on goal 1
and agent 1’s bid is discarded as it is lower than agent 2’s bid. In round 2 the net val-
ues have changed as the new bids in the shared data structure are considered. Agent
2 and 3 have not been overbidden, so they won’t bid in this round and does now
consider themselves owners of the goals they bid on in round 1. However agent 1
overbids agent 3 on goal 2 as the shared data structure shows. Now in round 3 agent
1 has become the owner of goal 2 and agent 3 bids on goal 3 as this is the best goal
for it considering the latest bids in the data structure. Now all agents are assigned a
goal and the auction ends. We see in this case that we do not get the optimal solution
(agent 1 = goal 1, agent 2 = goal 3, agent 4 = goal 2, total benefit = 42) but instead a
solution very close to the optimal (total benefit = 41).
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and thus the issues were with the interaction between the components. We
decided to skip Jython, ActiveMQ and EISMASSim and to instead follow a
much cleaner Python-only implementation. Even though some work was
needed to implement the protocol specific parts which EISMASSim handled,
this left us with a more flexible implementation of which we had complete
knowledge and control of every part and relieved us from most of the perfor-
mance issues.

We did not have time to implement our own messaging server with a
simple text-based protocol but instead choose to use a set of shared data
structures for agent communication. This ensured great performance and
was possible because distributing the agents on different computers was not
necessary.

4.1 Modeling the Environment

Each agent keeps an internal model of the environment. The environment
is trivially modeled as a graph using simple data structures and classes. Every
agent is responsible for parsing the messages it receives from the competition
server and updating its model accordingly. The agents are also responsible for
sending new percepts to the other agents of the team.

Agent positions are represented by a two way mapping allowing retrieval
of all agents at a given position, or the position of a given agent. Due to the
non-static nature of the agents and their limited visibility range, agents must
be removed from this mapping when moving out of the visible area for an
agent to avoid inconsistency between the “true” world as represented by the
server and the internal world of the agent. The agents also share their per-
cepts of other agents and their own position. However it does happen that an
enemy agent moves out of vision for all team agents. In this case we keep the
agent in the position mapping allowing inconsistency until it becomes visi-
ble again and the mapping is updated. An agent can then use this inconsis-
tent information if it needs to locate the “disappeared” agent. Thus instead
of randomly searching in non-visible areas, it can start searching in the area
where the agent disappeared.

4.2 Goal Searching

A goal is contained in the abstract type we call Action which is not only used
for the agreement auction itself, but also for the agents to carry out the nec-
essary steps to achieve a goal when they have won it in the auction. In our
implementation, satisfying a goal implies reaching a specific vertex and then
performing some action (in some cases the skip action). The Action type is
defined as follows:

1 class Action():
2 def __init__(self, goal, type, vertex=None, cost=0, path=[], arg=’’, length = 0):
3 self.goal = goal
4 self.type = type
5 self.arg = arg
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6 self.vertex = vertex
7 self.cost = cost
8 self.path = path
9 self.length = length

Here goal is the name used to distinguish goals during the auction, type is
the action the agent must perform when reaching the vertex given in vertex
and arg is a possible argument for the action to be executed. cost is subtracted
from a constant and the result is used as the goal benefit needed for the auc-
tion. The path contains a list of vertices the agent must follow to reach the
vertex given in vertex and length is simply the length of this path.

The code below is part of the get goals method which returns a set of Ac-
tions. It shows how a saboteur performs a goal search before participating
in an agreement auction. The RUNTIME parameter is a constant determin-
ing when the team strategy changes from achievement to area controlling as
further described in section 5.

If the current agent is a saboteur and attacking is enabled we check if the
team is currently on the area controlling strategy in line 5. If this is the case,
the agent’s knowledge of the currently controlled zone is updated in line 6.
Line 7 is a custom best-first search returning a set of Actions. The first param-
eter is a string to which an opponent name will be appended. This will be
given as the goal name to the Action constructor while the second parameter
is given as the type. The rest of the Action constructor parameters are given
directly from within the search. The third parameter indicates where to start
the search from, namely the position of the agent. The fourth parameter is
a pointer to a function that determines which vertices are valid goals and
which are not. In this case a valid goal is a vertex in the currently controlled
zone with a non-disabled opponent agent placed on it. The last parameter
indicates that the search can stop when 2 valid goals are found, because only
the two saboteurs will bid on these goals. The for-loop on lines 8-9 lowers
the found Actions’ cost value equally by a constant so great that they will al-
ways be chosen over other possible Actions. If less than 2 Actions are found,
other Actions are needed, as the agent must be sure to win the auction for
at least one goal. To find additional goals another similar search is run, how-
ever this time the fourth parameter is a new function pointer. This function
will validate every vertex that is not in the currently controlled zone and has
a non-disabled agent placed on it.

If the current phase is instead the achievement phase, the code jumps from
line 5 to line 12 and in this search the currently controlled zone is not com-
puted and thus no vertices will be ignored by the validating function.

1 if
2 ...
3 elif self.type == SAB:
4 if DO_ATTACK:
5 if self.runtime> RUNTIME:
6 self.get_expand()
7 goals = self.bfs(’attack owned ’, ATTACK, start, self.get_opponent_in_owned, 2)
8 for g in goals:
9 g.cost = g.cost− 100

10 if len(goals) < 2:
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11 goals.extend(self.bfs(’attack ’, ATTACK, start, self.get_opponent, 2))
12 else :
13 goals = self.bfs(’attack ’, ATTACK, start, self.get_opponent, 2)
14 else :
15 goals = self.bfs(’survey ’, SURVEY, start, self.is_unsurveyed, 10)

It might still be the case that less than two Actions have been found. This
is handled at a later point in the get goals function. Actions helping area con-
trolling are added if the strategy is area controlling and survey actions are
added if the strategy is achievement. Note that the agent must then have at
least 10 different goals as it now possibly auctions against all the other 9
agents. If the agent still has not found enough Actions, ignore actions with
low benefit will be added to the Action set until sufficient actions are avail-
able.

5 Strategies, Details and Statistics

Considering the complexity of the environment in combination with the
nondeterminism introduced by the opposing team’s agents, it is clear that
classical planning approaches will not suffice for this scenario. We instead
let the agents implement a greedy top-level strategy by calculating priori-
tized sets of goals at each simulation-step. The goals depend on the agent’s
role, the state of the agent’s internal world and how far the simulation has
progressed as described in section 4.2. The strategy is greedy as agents does
not consider subsequent goals when deciding on a set of goals.

5.1 General Strategy

In the Agents on Mars scenario there are two main ways to earn points. The
first is achievement points which are given to a team if they achieve some
goals cf. [Behrens et al.,2011]. 2 points were rewarded for reaching an achieve-
ment. This means that the team will get 2 points every step for the remainder
of the match, unless the points are used to buy special abilities for the agents.
It follows that if we are interested in making achievements it makes most
sense to do so as early as possible in a match, since this will give us points
in every time step for the rest of the match. Another interesting thing is that
the number actions required to get achievements in each area increases ex-
ponentially. For example, one gets 2 achievement points when the team has
done 5 successful attacks, then another 2 after 10 successful attacks, then
20 successful attacks, then 40 successful attacks, then 80 successful attacks,
etc. This means that if we are to maximize our earning from achievements,
it is probably a good idea to be versatile and good at all the different kinds of
achievements. For example, after 160 attacks it will be much easier to survey
5 edges than attack opponents another 160 times (though attacking oppo-
nents gives other desirable benefits as well).

The other way to earn points is by controlling areas which gives as many
points as the controlled areas are worth every time step cf. [Behrens et al.,2011].
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But before we have probed the vertices of the graph each vertex we control
will only give 1 point per time step instead of its real value (which is in the
interval {1, ..., 10} in the competition). It seems like an obvious choice to let
our two explorer agents probe a number of vertices in the beginning of a
match before trying to have our agents control an area with high value. In
the meantime the other agents can try to do as many achievements as possi-
ble. In the competition we used the first 80 time steps to get as many achieve-
ments as possible and thereafter we would try to control an area with as high
value as possible for the rest of the match. We will refer to the two strategies
as the achievement strategy and the area controlling strategy respectively. The
choice of the 80 time steps is based on our experience of how long it typi-
cally takes our agents to reach a reasonable number of achievement points
while also discovering some “valuable” parts of the graph. This can clearly
be refined and is not necessarily the best choice on bigger maps than what
was typically used in the competition.

5.2 Achievement Strategy

The goal of this phase is to explore the graph to get information about the
map structure while getting as many achievement points as quickly as pos-
sible. This naturally also involves probing as many nodes as possible which
will prepare us for the area controlling phase.

To be versatile and obtain different kinds of achievements, most of the
agents will perform the task that is unique to them given their role during
this phase of the game. Explorers will probe vertices and typically reach 60-
80 probes before the phase is over. Sentinels will survey and inspectors will
inspect other agents and start surveying if all opponents are inspected before
the phase ends. Saboteurs will attack non-disabled opponent agents, prior-
itizing repairers and saboteurs over other agent types. Repairers will survey
if no team agents are disabled, otherwise they will repair team agents, prior-
itizing a disabled repairer over other agents. When choosing between mul-
tiple possibilities, i.e. different unprobed vertices, multiple disabled agents,
etc. the agents will always choose the closest target where the distance is cal-
culated using the pathfinding algorithm given in section 6.2 taking path
length, the number of vertices on the path and the agents’ recharge rates
into account.

5.3 Area Controlling Strategy

As the vertices with high values are typically placed close to each other in the
maps of the competition, both teams will usually not have any choice but to
try to get control of as much of this area as possible. We will call this area
the good area. Because if we try to control areas in other parts of the graph,
the opponent team will get control of the good area, leading to us losing the
match. In our area controlling strategy the saboteurs will still try to attack
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opponents and the repairers will also use the same strategy as in the achieve-
ment phase. If our opponents try to get control of the good area as well, our
saboteurs and repairers will also be in the good area and indirectly help us to
get control of as many vertices as possible in this area. The other six agents
will place themselves on strategically important vertices given by the area
controlling algorithm in section 6.1 to give us control of as valuable an area
as possible. If there is a part of the good area that has not been probed, our
explorers will probe that part before helping to control the area so we will
not miss out on any area points due to unprobed vertices. In addition, the
agents capable of parrying attacks will do so, while they try to control ver-
tices giving us achievement points and making the time spent by the oppo-
nent saboteurs for each successful attack longer.

5.4 Putting It All Together

In the above we have omitted the discussion of how the agents agree on
who does what when conflicts can occur. The assignment problem is simply
solved using the strategy described in section 3.1. In this way each agent will
specify his benefit for the different goals according to his beliefs about the
world and then the agents will in a distributed manner negotiate an assign-
ment that gives as large benefit for the whole team as possible. Also, the as-
signment algorithm guarantees that the disabled agents are divided among
the repairers in a way such that they will not try to repair the same agent. The
same concept applies to agents with survey goals and any other type of goal
which more than one agent is capable of accomplishing. We did not cover
what our agents will do when the whole graph is surveyed before the 80 steps
are over. In this case the agents will start using the area controlling strategy
one by one. This makes the transition between the two strategies natural and
our coordination algorithm will make sure this is done automatically.

Our solution came in as number two in the final ranking. Out of 24 matches
we lost all three matches against the team taking the best ranking and only
one other match. The total score of all teams was also compared and in this
category our team came in as number one scoring almost 20% more than
the second best which was the overall winner. Even though the total score
didn’t count in the final ranking, we still think that it is very important and
that it suggests that our solution had very much potential. It is very hard
to point out the exact reasons that we lost some matches. This is because
matches cannot be directly compared due to the random map generation
and because one action may have great side-effects in one match but not
in another. However it seemed like the winning team only did better than
us on some key points, especially in upgrading their saboteurs and that we
were equally fit in most other areas. For some areas we even did better than
the winning team, which is backed by the fact that our team got the highest
overall score.
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6 Additional Algorithms

In this section we describe the area controlling and pathfinding algorithms
used in the solution. We give the algorithms in pseudo-code and discuss im-
portant aspects such as running-time, correctness and termination.

6.1 Area Controlling

Given the nondeterminism of the environment and the graph coloring de-
scribed in section 2.2 it is clear that it is unfeasible to search for an optimal
solution to zone controlling. Therefore the algorithm is very much designed
by trial and error while taking area robustness, agent count and zone value
into account. Two parameters directly influence the value of a zone Z ⊆ V ,
namely the size of the zone |Z| and the values of its vertices value(v), v ∈ Z.
Two very similar algorithms, AREA1 and AREA2, are used to decide on an
area. The only difference is that the algorithm AREA2 tries to find an area
which is free of opponent agents. If this is not possible then AREA1, which
ignores opposing agents, is used instead. The pseudo-code is provided as al-
gorithm 1 and algorithm 2.

Informally AREA2 first finds the most valuable vertex v in the graph. Now
let C be the set of vertices with distance 2 to v. The vertices in C form a fron-
tier around v such that all paths from v to vertices with distance greater than
2 to v goes through a vertex from C. Starting with a random vertex u ∈ C
the following vertices will be selected from C such that they have distance 2
to a previously selected vertex from C. The final selection will include v and
every second node on the path created by the frontier.

The idea is then to place an agent on each of the selected vertices. When
not considering opposing agents this construction will create a zone con-
taining all selected vertices and additionally at least the vertices between v
and the frontier and vertices outside of the frontier connected to two of the
selected vertices in the frontier cf. section 2.2.

First AREA2 is run with i = 6 (at most 6 agents will participate in area con-
trolling as repairers and saboteurs will keep repairing and sabotaging). Thus
the middle vertex v and 5 vertices from the frontier are selected. If the num-
ber of vertices in the frontier is greater than 10 only part of the frontier will
be covered by the final selection. If AREA2 fails to return an opponent-free
area of the desired size, AREA1 is run with i = 6. If the number of vertices
in the frontier is less 10, vertices between v and the frontier are randomly
selected until 6 vertices are selected in total, thus increasing the area’s ro-
bustness against opposing agents.

All nodes with distance 3 to v are probed if their value is unknown and the
area is reconstructed at every simulation step making it dynamically adapt
to the placement of the opposing team’s agents. Testing has shown that the
size of the circle around v (distance 2 to v) is a good tradeoff between easy
protection from opposing agents and zone size. See figure 4 for an example
of an area and the corresponding agent placement.
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Algorithm 1 AREA1(G = (V,E), i)
R← ∅
u1 ← NIL
for v ∈ V do

if u1 = NIL ∨ value(u1) < value(v) then u1 ← v
end if

end for
R← R ∪ {u1}
for u ∈ V do

candidate← NIL
for v ∈ R do

if DISTANCE(u, v) < 2 ∨ u ∈ R then
candidate← NIL
break (inner for-loop)

end if
if DISTANCE(u, v) = 2 ∧DISTANCE(u1, v) = 2 then

candidate← u
end if

end for
if candidate is not NIL then

R← R ∪ {candidate}
end if
if i = |R| then returnR
end if

end for

for v ∈ V do
if DISTANCE(u1, v) = 1 ∧ v /∈ R then

R← R ∪ {v}
end if
if i = |R| then returnR
end if

end for
returnR

where DISTANCE is defined for vertices s and t ∈ V as:

DISTANCE(s, t) = i⇔ ∃v0,...,vi∈V (s = v0 ∧ vi = t ∧ (vj−1, vj) ∈ E for j ∈ {1, . . . , i})
∧¬∃v0,...,vk∈V (s = v0 ∧ vk = t ∧ (vj−1, vj) ∈ E for j ∈ {1, . . . , k} ∧ k < i)

AREA1 returns the set of selected vertices R. The first for-loop runs exactly |V | it-
erations. The following outer for-loop iterates at most |V | times while the inner
for-loop iterates at most i − 1 times. Checking for distance 2 which is done inside
the inner for-loop can trivially be done with a breadth-first search in time b2 ≤ |V |2
where b is the number of neighbors and we thus get the total running timeO(|V |3)
as i is a constant and AREA1 is thus polynomial in |V |. This running-time is how-
ever very pessimistic as the branching factor is less than 10 for all maps we have
seen so far. Assuming a constant branching factor we could instead obtain a run-
ning time linear in |V |. In all loops every element in a set of vertices is considered
exactly once, and as the number of different vertices is finite, the algorithm will
always terminate even if vertices are added to the sets inside the loops.
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Algorithm 2 AREA2(G = (V,E), i)
R← ∅
u1 ← NIL
for v ∈ V do

if u1 = NIL ∨ value(u1) < value(v) then u1 ← v
end if

end for
R← R ∪ {u1}
for u ∈ V do

if OPPONENTFREE(u) then
candidate← NIL
for v ∈ R do

if DISTANCE(u, v) < 2 ∨ u ∈ R then
candidate← NIL
break (inner for-loop)

end if
if DISTANCE(u, v) = 2 ∧DISTANCE(u1, v) = 2 then

candidate← u
end if

end for
if candidate is not NIL then

R← R ∪ {candidate}
end if
if i = |R| then returnR
end if

end if
end for
returnR

where DISTANCE is defined as in AREA1

and OPPONENTFREE is defined so that a vertex u is opponent free for a team t if

¬∃v, a(team(a) 6= t ∧ pos(a) = v ∧ (v = u ∨ (u, v) ∈ E))

The running time and termination of AREA2 is identical to AREA1 except from the
OPPONENTFREE check made inside the second outer for-loop. However this check
can trivially be done with a breadth-first search in timeO(b) ≤ |V | and we again get
the total running timeO(|V |3) for AREA2 which similarly is polynomial in |V |.
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Fig. 4. A scenario showing area controlling by the blue team. The vertex v marked by
a red circle has value 10 (the highest possible value). The vertices marked by a yellow
circle covers part of the frontier around v. All of these vertices have distance 2 to v
and distance 2 to their selected neighbors in the frontier. The purple circles show
that the zone is not opponent-free and has therefore been constructed by AREA1, as
no opponent-free zones could be constructed.
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6.2 Pathfinding

Pathfinding in scenarios similar to that of the competition is usually done
using a best-first algorithm such as A*. This however requires an evaluation
function and that some heuristic can be applied to the domain, in many
cases euclidian distance can be used. However this was not possible in this
particular domain as no physical placement or positions of the vertices are
given.

To avoid exponential running times of breadth-first and similar search
algorithms we instead implemented and tweaked an all-pair shortest path
algorithm to allow dynamic vertex addition. However we did not use this
algorithm in the competition mainly for the two following reasons.

First, in the early development phase we suspected our dynamic all-pair
shortest path algorithm as a candidate for some performance issues. How-
ever we discovered that the issues were I/O related, and found that we had
plenty of processing time and power to perform multiple stock graph search
algorithms at each simulation step. Secondly, the importance of not only
considering the edge weights but also the number of vertices on a path as de-
scribed shortly, led to the decision to use the algorithm described in the fol-
lowing section for path-finding. We could instead have tweaked the dynamic
all-pair shortest path algorithm to also consider the number of vertices on a
path, but this seemed to be nontrivial. However the all-pair shortest path al-
gorithm could still be highly relevant in case of less processing time or bigger
graphs.

Pathfinding in Discrete Time Given a weighted undirected graph G =
(V,E), it is trivial to find the shortest path between two vertices u and v ∈ V
using stock graph search algorithms such as best-first search. However the
given scenario yields for a pathfinding algorithm not only taking the total
path length but also the number of vertices on the path into account. This
becomes evident when considering the discrete nature of the competition
scenario.

In general it is desirable for an agent to reach a given goal which might in-
volve moving from a vertex u to another vertex v in as few time-steps as pos-
sible. Thus enabling the agent to reach more goals throughout a simulation.
Also the possible points given for reaching a goal will have a greater effect
on the final score, the earlier the goal is reached cf. section 2.1. But reaching
goals clearly also requires energy. Only the skip and recharge actions does
not consume energy and clearly these will not directly help an agent reach
any goals.

Moving from a vertex u to another vertex v through a path p will con-
sume the sum of the edge weights on p from the agent’s energy. Choosing
the shortest path will therefore minimize the required energy. However it
also requires n − 1 time steps to move from u to v through p where n is the
number of vertices on p. As seen in figure 5 the shortest path in terms of edge
weights might not be the shortest path in terms of required time-steps. To
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this extend there is however, an important relation between time-steps, en-
ergy and path length. Assume that an agent a has e(a) = 20, pos(a) = v1 and
h(a) > 0 at time-step s in figure 5. Choosing the shortest path p1 in regards
to edge weights (v1, v2, v3, v4), awill reach v4 at time-step s+3 with e(a) = 14.
Choosing the shortest path p2 in regards to required time-steps (v1, v5, v4), a
will reach v4 at time-step s+ 2 with e(a) = 13. a can then perform a recharge
action and will thus be in a better position (e(a) would be higher), at time-
step s + 4 if a chooses p2. And thus clearly p2 is the optimal choice in this
situation.

v1
v53

v2
2

v4
4

v3
2

2

Fig. 5. Getting from vertex v1 to vertex v4 an agent can choose between path v1, v5, v4
with total cost 7 which requires 2 time-steps or path v1, v2, v3, v4 with total cost 6
which requires 3 time steps.

We give the following definition of a best-path:

Definition A path p between two vertices u and v is an ordered set of ver-
tices w0, . . . wi where i ≥ 1 such that u = w0, . . . , wi = v and (wj−1, wj) ∈
E for 1 ≤ j ≤ i. The length of p is length(p) = i and the cost of p for an agent
a is given as:

cost(p) =
i∑
1

(weight(ei) + rr(a))

= i ∗ rr(a) +
i∑
1

weight(ei)

= i ∗ rr(a) + edgecost(p)

Where ei = (wi−1, wi) and rr : A → N is the recharge rate for a agent defined
as:

rr(a) = 50% ∗me(a) rounded to the nearest integer, if h(a) > 0
rr(a) = 30% ∗me(a) rounded to the nearest integer, if h(a) = 0
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Finally p is the best-path for a if there is no path p′ such that:

cost(p) > cost(p′)

Energy Overflow Unfortunately choosing a path using the definition above
will not always lead to the optimal path choice. Consider the two paths from
v1 to v4 in figure 6: Let a be an agent with me(a) = 14, h(a) > 0 and e(a) = 14
at time-step s. Then p1 = v1, v2, v3, v4, length(p1) = 3, cost(p1) = 30 and p2 =
v1, v5, v4, length(p2) = 2, cost(p2) = 29 and thus cost(p2) < cost(p1) and p2
should be the optimal path. However choosing p2, a will have to recharge
after traversing (v1, v5) before it can traverse the edge (v5, v4) and thus a will
arrive at v4 at time-step s + 3 with e(a) = 4. If a instead choose p1 it could
walk the complete path without recharging and thus reach v4 at time step
s + 3 with e(a) = 5. But then p1 is clearly better than p2 for a and it follows
that p2 is not optimal.

The reason that p1 comes out as the better choice in this case is that a does
not get the full potential of the necessary recharge on p2. The recharge could
potentially increase a’s energy by 7, but because me(a) = 14 and e(a) = 9
when the recharge action is carried out, a only increases its energy by 5. If
these two energy points wasn’t lost, which we denote as energy overflow, p2
would indeed be the optimal choice for a. Note that the order of the edges is
also important. If we swap the weight of edge (v1, v5) and (v5, v4), p2 would
also be the optimal choice.

We stick to our definition of best-path as it really is optimal when there is
no overflow and still gives a very decent path even with energy overflow, be-
cause there is a bound of the energy overflow, which in addition only rarely
happens in this domain as we shall see in the following sections.

v1
v55

v2
2

v4
10

v3
3

4

Fig. 6. Getting from vertex v1 to vertex v4 an agent can choose between path
v1, v2, v3, v4 with total edge-weight 9 with length 3 or path v1, v5, v4 with total edge-
weight 15 and length 2.

Bounded Energy Overflow Energy overflow can only happen if an agent
a needs to traverse an edge (u, v) ∈ E and e(a) < weight((u, v)) ∧ e(a) >
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(me(a) − rr(a)) and the energy overflow is then given as overflow = e(a) +
rr(a)−me(a). But as there is an upper bound on all edge weights of 10 cf. sec-
tion 2 it is always the case that e(a) < 10 when overflow happens. But from
here it follows that overflow can never happen if h(a) = 0 as e(a) + rr(a) −
me(a) < 0 when e(a) < 10 due to the recharge rates and maximum energy
of the different agent roles. It also follows that the greatest energy overflow
possible is 2 for the saboteur, 1 for the repairer and the inspector and that
overflow will never happen for explorers and sentinels. Lastly energy over-
flow will only happen for a repairer or inspector a if e(a) = 9 and a needs
to traverse an edge with weight 10, and will only happen for a saboteur a if
e(a) = 9 and the following edge has weight 10 or if e(a) = 8 and the follow-
ing edge has weight 10 or 9. After an occurrence of energy overflow for agent
a, it must be the case that e(a) = me(a) thus it requires traversal of an edge
to bring e(a) < 10 so another energy overflow can happen. Thus for a path
of length i the maximum overflow for a is bounded by i/2 · 2 = i assuming
that a starts with e(a) = me(a). In most cases there is no energy overflow or
the actual energy overflow is much lower because it will only happen in rare
situations due to the random map generation and the required edge constel-
lation.

Optimal with No Energy Overflow Under the assumption that energy
overflow will never happen, it is clear that every recharge action for an agent
a will increase e(a) by rr(a). Thus recharges will be carried out by a when-
ever needed. But under this assumption we can ignore the maximum energy
restriction for awhen considering paths. This is because it then makes no dif-
ference if a recharges when required while walking a path p, or if a recharges
enough to walk the complete path before starting the walk. But then we can
say that a path p from u to v ∈ V is better than a path p′ from u to v ∈ V if at
least one of the following points holds:

Let a start at time-step s and from there recharge enough to walk the com-
plete path and let e(a)p′′ denote the amount of energy a has after walking a
path p′′:

1 a arrives at v at time-step s+ i, i > 0 for both paths but e(a)p > e(a)p′ (p is
obviously better than p′)

2 a arrives at v at time-step s+ i after recharging and walking p and at time-
step s+ j after walking p′, where 0 < i < j and e(a)p+ j− i∗ rr(a) > e(a)p′

(p is shorter than p′ and a can use the saved time-steps to recharge and is
then in a better position at time s+ j by choosing p over p′)

3 a arrives at v at time-step s+ i after recharging and walking p and at time-
step s+ j after walking p′, where 0 < j < i and e(a)p′ + j− i∗ rr(a) < e(a)p
(p′ is shorter than p but using the saved time-steps to recharge will not
leave a in a better position at time s+ i)

And by the definition of best-path at least one of these points must holds if
cost(p) ≤ cost(p′). This is easily seen as cost is composed by the total edge
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weight + (the path length × recharge rate of the agent) where the multipli-
cation implicitly expresses that the possible ”saved time-steps” are worth as
much as an agent could increase its energy by using them to recharge. The
pseudo-code for finding the best-path is provided as algorithm 3.

7 Conclusion

We have implemented an auction based agreement algorithm which turned
out to be a very good solution for cooperation between the agents. We have
found a close to optimal solution to the non-trivial problem of pathfinding
in discrete time. Tweaking our solution with prioritized attacks and repairs
have also proven very effective for the given scenario.

Even though the nature of the competition and the time limitation en-
courages very domain specific solutions, we have considered genuine multi-
agent challenges such as agreement, cooperation and communication. Python
has proved to be a suitable programming language for implementing a multi-
agent system. We did not encounter any programming language specific prob-
lems or limitations and many features of Python helped us develop an effec-
tive yet very compact solution. We were mostly satisfied with the behavior
of our agents, however there is still room for improvement. Our general ap-
proach and strategies turned out to be very effective, but because of the time
limitation we could not implement all of our ideas. Especially our vertex ex-
pansion algorithm could have been further optimized and our buying strat-
egy could have been dynamic so that it took the opposing team’s strategy
into account.
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c← DEQUEUE(Q)
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R← R ∪ {c}
for s ∈ V and s 6∈ R do

if (c, s) ∈ E then
S[s]← weight(c, s) + S[c] + rr(a)
T [s]← c
ENQUEUE(Q, s, S[u])

end if
end for

end while
return NIL

DEQUEUE returns the element enqueued with the lowest priority

When v is found S and T is returned from which respectively the path cost and
the path can be extracted. The algorithm returns NIL if there is no path between u
and v. In the outer loop only elements not in R are selected from V and are subse-
quently added toR thus the algorithm will always terminate. In the worst case the
algorithm will consider all paths to all possible nodes thus the time complexity is
O(bd) where b is the branching factor and d is the maximum path length. When v
is dequeued from Q it has the lowest priority in Q. Clearly if u is dequeued again
at a later time it will thus have the same or a higher priority. Also v could not have
been dequeued at an earlier step with a lower priority as the algorithm would then
have terminated. It is easily seen that the priority is equal to cost(p) for the path p
that can be extracted from T . As the algorithm considers all paths to all possible
nodes it must therefore be the case that the path that can be extracted from T is
the best-path path from u to v.
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Short Answers

Introduction

1. We are affiliated with DTU Informatics (short for Department of Infor-
matics and Mathematical Modelling, Technical University of Denmark,
and located in the greater Copenhagen area). We participated in the con-
test in 2009 and 2010 as the Jason-DTU team since we used the Jason plat-
form and its agent-oriented programming language AgentSpeak. We per-
formed well but for the contest this year, with the new and more complex
scenario, we decided to focus on an auction-based agreement approach
and to implement the multi-agent system in the programming language
Python.

2. The project is done as a special course in June-September 2011 with more
or less the same team as in 2010.

3. The name of our team is Python-DTU.

4. The members of the team are Mikko Berggren Ettienne and Steen Vester,
MSc students, and associate professor Jørgen Villadsen, PhD.

5. We are part of Algolog, the Algorithms and Logic section, which is re-
sponsible for the Efficient and Inteligence Software study line of the MSc
in Computer Science and Engineering program.

System Analysis and Design

1. We did not use any multi-agent system methodology. We preferred a flex-
ible implementation of which we had complete knowledge and control
of every part of the implementation.

2. We did not implement a solution with a centralization of coordination/in-
formation on a specific agent. Rather we implemented a decentralized so-
lution where agents shared percepts through shared data structures and
coordinated actions using distributed algorithms.

3. Our communication strategy is to share all new percepts to keep the agents
internal world models identical. Furthermore our agreement based auc-
tion algorithm heavily relies on communication and is part of how agents
decide on goals.

4. Each agent acts on its own behalf based on its local view of the world
which is updated through percepts and is thus autonomous and reactive.
This is implemented as an agent-control-loop in which the agents decide
which actions to execute based on their current view of the world. When
a repairer and a disabled agent moves towards each other the repairer de-
cides and announces who should take the last step so they won’t miss
each other. This proactiveness is implemented by considering the cur-
rent energy and the paths of the agents.
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5. Our solution is a true multi-agent system. However it is currently limited
with regards to distributivity by the way the agent communication is im-
plemented.

6. We invested approximately 400 man hours for implementing the system.

7. We discussed agent designs and strategies with other teams during the
competitions. We also tested our solution multiple times against itself
and the other teams participating in the official test matches.

Software Architecture

1. We used the programming language Python to implement the multi-
agent system.

2. We did not use any multi-agent programming language. We have good
experiences with Python and would rather get started than spend time
learning a new programming language.

3. The agent is implemented as a class and any number of agents can be
started with a loop where each is given a reference to the shared data
structure. Most of our designed architecture is implemented using Python
lists and dictionaries and for some artifacts we have implemented regular
classes.

4. We used Ubuntu Linux and Mac OS X as development platforms and
GEdit, Eclipse and TextMate as code editors/IDEs. A couple of hours were
used to investigate advanced features of the editors.

5. We only used the Python runtime again on Ubuntu Linux and Mac OS X.
We have used approximately 20 hours to investigate advanced features of
Python.

6. We missed better editor support, code completion, syntax support and
debugging capabilities for Python.

7. The following features of Python has simplified out development task:
dynamically typed, concise and compact, no compilation, multiple built-
in list functions and support for multiple programming paradigms (espe-
cially the functional).

8. Our implementation has mainly relied on custom best-first searches and
a distributed auction-based agreement algorithm and a custom pathfind-
ing algorithm tweaked for this domain.

9. We did not distribute the agents on several machines for two reasons.
First, we had no need to, as we had plenty of computation power on a
single machine to reason and send the action messages before the dead-
lines. Secondly the shared data structure in our implementation would
have to be replaced by a message server and a simple protocol. We con-
sidered this but due to limited time we had to prioritize differently.
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10. The agents are single threaded, all reasoning is done in-between the receive-
percept and the send-action messages.

11. The most difficult parts of the implementation was the different custom
algorithms. Especially the ones requiring some kind of synchronization
between the agents. This was solved using the shared data structure in
combination with timeouts.

12. We have written 1345 lines of code in total (including comments).

Strategies, Details and Statistics

1. Our main strategy is to use the first 10% of a simulation for exploring the
map and inspecting the opponent. Hereafter we focus on controlling a
valuable area while letting saboteurs attack and repairers repair.

2. Every agent share any new information it perceives with all other agents.
An agent does also calculate a series of prioritized goals and is assigned to
one of these after participating in the agreement auction. Information
about other agents, etc. is stored in a shared data structure and can be
updated by any agent.

3. The agents start out by probing and surveying most of the map. Edge
weights are used for pathfinding and vertex values are used when decid-
ing on an area to control.

4. A simple class inherited by each agent handles xml parsing, creation of
xml-messages and sending and receiving them over a TCP/IP connec-
tion.

5. Every agent has a strategy related to its role. However all agents will fol-
low the explorers strategy at a certain time-step if its own strategy doesn’t
yield any goals at that step.

6. Our strategy is to dynamically select the most valuable known vertex v
on the map and probe every vertex with distance 3 to v. We then form
a circle around v by selecting vertices with distance 2 to each other and
distance 2 to v. Because valuable vertices are always clustered we don’t
estimate the zone value.

7. Our saboteurs prioritize attacking opponents inside the zone we control.
This helps both conquering and defending zones. However, if the zone
is clear of enemies, they will attack all over the map, including enemy
zones.

8. Our agents changes behavior to follow the main strategy. This change
from exploring to area controlling as triggered by a specific time step in
the simulation. Also if their current strategy does not yield any goals they
will temporarily adopt another strategy.
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9. A customized best-first algorithm taking both agent energy, agent recharge
rate, path length and the number of vertices on a path into account was
used for pathfinding.

10. When we reach a certain point in the simulation, we upgrade our sabo-
teurs health and strength with one point.

11. Achievements points are a big part of the overall score for our team, es-
pecially the ones that are obtained early in the simulation. Except from
that they are not very important for our strategy.

12. Our agents does not have an explicit mental state.

13. Our agents mainly communicate and coordinate by placing bids on dif-
ferent goals in a shared data structure when participating in the auction-
based agreement algorithm.

14. We have not taken an organizational approach, thus the organization of
our agents is implicit.

15. All our agent behaves individually and autonomously to achieve the best
for the team, taking their current position, health, etc. into account when
deciding on a goal.

16. Our agents does not perform any planning other than pathfinding. A
path can reach many steps ahead, but is re-calculated at each time-step.

Conclusion

1. Participating in this competition has greatly increased our experience
with many of the practical, implementation and theoretical aspects and
challenges of constructing a multi-agent system.

2. We had a very strong solution doing good against all teams and only loos-
ing to one. In general we were good at disabling enemy agents, repairing
team agents and controlling areas. A weak point was our static buying
strategy which gave teams with a dynamic buying strategy an advantage
against us.

3. We found Python very suitable for implementing an efficient solution
with a manageable amount of code. Our custom algorithms have all proved
very useful for this specific domain.

4. We think that changes in the balancing of the competition were announced
too late. We suggest that important parameters should be settled on at
least a month before the competition date. We were happy with the test
runs, but we suggest that they are performed at an earlier point to avoid
the problems many teams had with server communication.
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5. Part of why we did good is because we could quickly implement the nec-
essary framework in Python and focus on more important things like
strategies and algorithms. Many other teams had great trouble with com-
munication with the game server throughout the competition.

6. We think the contest has relevant elements for the following research
areas: Algorithms, Game development, Game theory, Logic, AI.

7. We think that the scenario should be updated so that it is no longer feasi-
ble to share all percepts between all agents. Thus making it advantageous
to implement a true multi-agent system, which is not the necessarily the
case in the current scenario.

179 Technical Report IfI-12-02



AGaia-driven Approach for Competitive
Multi-Agent Systems

Sahar Mirzayi, Vahid Nateghi And Fatemeh Eskandari

Department of Computer Engineering, Faculty of Engineering
Arak University – Arak 38156-8-8349, Iran

sahar.mirzayi@gmail.com
vahid.nateghi@gmail.com

fatemeh.eskandari.69@gmail.com

Abstract. This is a report on Simurgh team’s participation in the 2011
multi-agent contest. The design and development process, architecture
details, and team strategies for the multi-agent system have been dis-
cussed, along with experiences of the developers. Gaia methodology
was used for the design and analysis of the Simurgh multi-agent sys-
tem. The main strategy was obtaining a higher score through the sup-
port of agents with a better perceived strategic placement. Decision cor-
rection strategy was used to change the agent behavior, by taking the
other conflicting team members’ decisions, into account. Simurgh was
implemented using Java language. Agents have the same degree of au-
tonomy and the team is implemented in a completely decentralized
fashion.
Keywords: Multi-Agent System, Gaia, Decentralized Coordination, Dy-
namic Role Assignment

1 Introduction

The multi-agent programming contest (MAPC) is held every year in the pur-
suit of expanding researches and testing frameworks and development envi-
ronments for the Multi-Agent Systems (MAS) [Behrens et al.,2010]. In 2011,
for the first time, Simurgh 1 team took part in the contest, in order to improve
its knowledge of MAS. Taking part in MAPC was a project of “specialized
studies in software engineering” course. Most of the material presented in
the course was about analysis, design and development of MAS. The MAPC
organizers introduced the “Mars” scenario for this year’s competition, which
was a complete redesign and different to the scenarios used in previous con-
tests, especially in that the map was based on a graph this year. The Simurgh
team decided to use Gaia methodology [Zambonelli et al.,2003] for the anal-
ysis and design of the agents and use Java as the implementation language.

1 Simurgh is an old Persian myth, quite similar to the Phoenix, however, a Phoenix
is believed to be quite small and to be reborn from its ashes, whereas a Simurgh is
believed to be big, very wise, and can be called upon by burning one of its feathers.
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The analysis phase started from Jan 2011 and because of multiple changes in
the scenario, the development continued on until September.
Simurgh is compromised of three members, Sahar Mirzayi, Vahid Nateghi
and Fatemeh Eskandari. Mirzayi is a Graduate student at Arak University.
Her interests are soft computing and distributed systems. Nateghi and Eskan-
dari are under graduate students at Arak University, interested in the field of
robotics.

2 SystemAnalysis andDesign

Our team used Gaia methodology for the analysis and design of Simurgh be-
cause of its high reactiveness property, accessibility of its notation and mod-
eling and its flexibility. Even though Gaia has the same precision property in
comparison with Tropos [Castro et al.,2002], clearness and understandabil-
ity of Gaia were the main reasons for our choice. Furthermore Gaia is appro-
priate for developing systems with small number of agent types. It is a gen-
eral methodology that supports analysis and design of both the individual
agent structure and the agent society in the MAS development process. Ac-
cording to Gaia, MAS is viewed as a composition of a number of autonomous
and interactive agents existing in a society, in which each agent plays one or
more specific roles.
Gaia defines the structure of MAS in terms of role model [Juan et al.,2002],
the model which identifies the roles that agents have to play within the MAS,
and the interaction protocols between the different roles. The objective of
the Gaia analysis process is the identification of the roles and modeling the
interactions between them.
the role model phase of Simurgh was analyzed using Gaia, the roles were
identified as follows: the Server Connector role is responsible for connecting
to the server, receiving perceptions and sending actions back. Agents should
be capable of translating perceptions and extracting information within per-
ceptions, this is theParser role. TheTeamCommunicator is another role which
has to facilitate communication with other teammates and share percep-
tions and decisions with them. Moreover, the agents should explore the map
and try to complete the world model; this is the operation for which the
World Explorer role is responsible. The Zone Holder is a role which should
try to create a zone or expand available zones. Some agents might be dis-
abled by opponent’s agents, theHelper role has to find these agents’ positions
and then approach and repair them. TheWater Well Explorer role is respon-
sible for finding water wells and increasing the team’s score. Because in this
year’s scenario, opponents can attack each other the Attacker role is defined
to blemish the nearest opponent’s agents if there are any. The Chaser role
is also defined for gathering position data on enemies’ agents and to attack
them. Because agents must have a plan to preserve themselves, the Defender
role is also defined for parry. Opponent Analyzer role tries to inspect enemies
in the maps’ vertices. And there is also the Savior role, which helps team-
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mates under opponent attack.
The roles are dynamically assigned to agents. The rules governing the dy-
namic role assignments are covered in section 4.
The requirements of the MAS were prioritized as goals. According to the sce-
nario and our strategy, supporting the best positioned agents, by other teammate,
to obtain the highest score, was our first priority. A very valuable goal is creating
zones in the map by finding the nearest friend using the Dijkstra algorithm,
but if there were already some zones, then the highest priority is assigned to
the agents who can expand the most valuable available zone. Also, if there
are some disabled agents, the important goal for the Repairer is to help these
disabled teammates. So the priorities of goals for each role are different. The
goals are as following:

– Move to a node for creating a zone
– Move to a node for expanding the zone
– Stand in a certain place to keep the zone
– Repair a disabled agent
– Move to a node for repairing a disabled agent
– Probe the node
– Move to a node for probing
– Parry
– Attack
– Move to a node for attacking opponents
– Move to a node for saving teammates
– Survey the map
– Buy

The most important goal is creating a zone. For each of the goals, a proper
algorithm is designed and implemented according to team strategies, which
will be discussed in section 4. All agents have the same degree of autonomy,
which makes our implementation a true MAS.
Simurgh used a decentralized coordination and cooperation mechanism for
implementing agents, which will be described in the following. In the be-
ginning of each step, agents share their perception to other teammates via a
shared channel and then update their perception according to the received
perception messages from the channel. In each step, agents define some goals
and inter-operate with other agents to make a final decision according to
other agents’ goals, autonomously. When agents share their goal with team-
mates, if there is a conflict between goals of two agents in the current step,
one of them chooses to change its goal to prevent a conflict. It was decided
that an agent with the lowest potential score for the team, changes its de-
cision but according to deadline approach, this could not be implemented,
therefore, in the final version, the agent which had to change its goal was
chosen by its goal’s priority. The agent should then replace its goal with
the one that doesn’t have any conflict with other teammates’ goals. In con-
flicting situations, the agent with better energy proceeds and the other one
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changes its action. The conflicts found in agents’ decisions are listed below:

– If two Explorers try to explore a same node one of them is doing a useless
action. So there is a conflict between two explore actions.
– If two agents try to survey the same node, one of them can do another

action because the resulting perceptions are shared at the beginning of
each step. In this case, the agent who has a larger visibility range does
the action and the other one should change its decision.
– Inspections done in the same node have the same result and therefore,

redundant. One of the agents should change its decision.
– When an agent tries to create a zone with a teammate, this teammate

should not move to other nodes for any reason except repairs.
– When an agent is trying to expand its zone, other agents in the zone,

which have a maximum distance of 2 from it, shouldn’t move to nodes
which have a maximum distance of more than 2 from the agent’s new
position.

Doing 2 Go-to actions with the goal of repairing a same agent, must not gen-
erate a conflict, because one of the repairers may face an attack and not be
able to get to the disabled agent. After taking these precautions, conflicts are
still possible because a second level of chosen goal message sharing was not
implemented.
According to the above, two types of communication were needed: shared
perception messages and shared chosen goal messages. Shared perception
messages are sent and received at the beginning of each step and the shared
chosen goal messages are exchanged after all agents make a decision about
their goal. Because each agent communicates with its teammates via a shared
channel, communication complexity in each step will be O(n), in which n
is the number of agents. Gaia can transform the analysis models into a suffi-
ciently low level of abstraction. The design phase of Gaia is agent model de-
sign [Castro et al.,2002]. The purpose of the agent model is to document the
various types of agents that would be used in the system. Creating the agent
model means aggregation of roles into agent types [Wooldridge et al.,2000].
The agent model of Simurgh is shown in figure 1. Agent types in the sys-
tem are defined in MAPC scenario as Explorer, Repairer, Saboteur, Sentinel,
and Inspector. Each agent should implement the Server Connector, Parser,
Team Communicator and World Explorer roles. As we described in section 4
explorers and saboteurs don’t implement the Zone Holder role. One of the
saboteurs has attacker role and the other has chaser role.

3 Software Architecture

The difficulties faced during the implementation, mainly stem from goal
choice. For example finding a good algorithm to create zones and keep them,

183 Technical Report IfI-12-02



Fig. 1. Agent model diagram

required hundreds of test-runs. The communication complexity is not a ma-
jor problem and doesn’t force developers to use a specific runtime platform.
Simurgh has been implemented using Java programming language and J2SE.
The messaging between agents to share perceptions and decisions also uses
apltk package features. As our team members were already familiar with Java,
there was no learning curve for using the programming language.
The agent’s architecture is shown in figure 2. Some of the ideas behind the
design of agent architecture were adapted from [Galoan et al.]. The eis-massim
package [Behrens et al., 2009] was used as the component for communica-
tion with the server. Inspired from black board design pattern [Wang et al.,2004],
the channel is a shared data structure where all agents can push and pull
messages. The perception updater module extracts information from per-
ceptions and saves it in an understandable format for agents. The percep-
tion sender shares perception with other teammates. The role assignment
chooses a role for the agent according to the perceived strategic placement.
Then the proper goal is selected from the goal repository. The goals are sent
to teammates for decision correction. If there is a conflict between two agents’
goals, the conflict finder exposes them. The new role assignment process will
be done, thereafter. In the end, proper actions are selected and sent to the
server.
Java doesn’t provide a convenient message broadcast mechanism. Moreover,
synchronization points cause bottlenecks because the independent code lines
after the point can’t execute and agents should stop decision process un-
til others reach the point. Using an object-oriented programming language
accelerates the design and implementation process. Furthermore, using eis-
massim, encapsulates connection handling details. Therefore, the whole im-
plementation is just a bit more than 4000 lines of code.
The synchronization takes less than 1 percent of each step’s length. All agents
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Fig. 2. The agent’s architecture

execute on the same physical machine, as the computation cost of the agents
is relatively low and as latency of connection to the server was one of our
biggest barriers, distribution of agents did not appear to be a wise deploy-
ment decision.

4 Strategies, Details and Statistics

In order to get to know the environment and fill the agents’ world model as
soon as possible, in the first ten steps, all agents have the explorer role. They
survey and go to new random vertices. After these steps, roles are assigned to
agents iteratively during the rest of the tournament. Then each agent should
follow a specific set of instructions according to its role.
Some criteria trigger agents to change their roles, such as: being disabled, be-
ing in a zone, being near a better zone, possibility of an attack, having a low
level of energy and the existence of a disabled teammate.
If an agent is low on energy, it recharges itself. If an agent is disabled, it tries
to approach a helper until it acquires energy. However a disabled repairer
tries to repair other teammates first (helper role), and then tries to approach
other repairers to acquire energy. The zone holder role (all agent types ex-
cept explorers and saboteurs) first expands the zone by scattering away from
teammate in the right manner. If the zone can not be expanded anymore
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and there is a bigger nearby zone, an agent may leave the zone and join the
other. If a zone holder senses a nearby probed node, it will change its posi-
tion, so that the score of the node is achieved in the current step. If a zone
holder doesn’t find a zone it tries to find the nearest zone holder agent and
create a zone with it. The water well explorer tries to survey new nodes in a
way that new non-probed vertices are visited. the World Explorer role uses a
taboo list to fill the world model quickly. If a savior receives a help message
from a nearby teammate which it has a maximum distance of two, it will
decide to attack the opponent in the next two steps. A chaser gathers op-
ponents’ position information and chases them with the goal of an attack.
When an agent knows that there is an attacker in its node, it chooses the
defender role and parries itself. An inspector chooses the opponent analyzer
role when an attack occur.
As described earlier, each agent shares its world model updates with team-
mates and then sends their decisions and if there is a conflict, it will be changed
in a way that the higher priority goal would be followed. At the end of each
step, agents send their actions to the server using the eis-massim package.
The main strategy of Simurgh is Cooperation with teammates and support-
ing them to realize better goals. There is no central or hierarchal leadership
and data doesn’t route to any specific agent.
Each agent has a world model that contains every detail captured from per-
ception messages. The most important element in the world model is the
map, a weighted graph in which both edges and vertices are weighted. The
other elements found in the world model are teammate positions, disabled
teammates, repairer teammates, teammates who are in a zone, savior team-
mates, each zone’s position and its score, explored water wells and enemies’
positions. if agents don’t have enough information about the world model
(usually in the first steps of the tournament) they should move to nodes in a
random fashion, in which case, a taboo list of visited nodes is kept to avoid
visiting nodes twice for several steps to ensure that world exploring is done
as soon as possible.
Each agent evaluates zones separately by the formula 1, as follow:

ZoneV aluei,j =
α ∗ scorei∑

k scorek
+
β ∗ distanceij∑

h distancehj
(1)

Where i is the zone’s number, j is the agent’s number, scorek is the score
of the kth zone, distanceh,j is the distance of jth agent from nearest agent in
the hth zone. α and β are constant values which are chosen by experimental
tests as α = 3 and β = 2 . If an agent has the zone holder role, it tries to join
the zone with better Zone Value.
Finding enemies’ zones and conquering them was not a part of our strategy
but agents can defend zones using the savior role. For finding the shortest
path to an agent, an improved Dijkstra algorithm [Horowitz et al.,2007] is
used.
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To improve the attacking power of the team, attacker and savior roles are
allowed to use achievements’ points and buy items like a shield, a sensor
and three sabotage devices, when the team is in the risk of a huge attack.
Although Simurgh uses achievement points to make purchases, no specific
plan was developed to increase achievement points.
Agents don’t have a mental state and plan for one step and if the priority
doesn’t force them to change their goal, the last goal is maintained. This goal
has to be realized by exactly one agent. Although Our Agents’ behaviors are
planned individually, an agent must know how to provide valuable informa-
tion to a specific teammate, for example, while chasing down enemy agents,
some feedback from nearby teammate agents might be needed.

5 Conclusion

Simurgh members were new to the field of multi-agent programming. In that
regard, MAPC was a very unique and valuable experience in design and im-
plementation of MAS. The first lesson learned during the implementation is
that multi-agent development methodologies are very diverse, and to make
a proper choice of methodology, thorough investigations are needed. There
are many multi-agent programming languages and tools, some of which di-
rectly implement the multi agent theory, while others extend existing lan-
guages to suit the MAS paradigm. The second lesson learned from MAPC was
that different communication strategies are needed for decision making and
realizing goals between agents living in a same society. Different approaches
were examined and tested and choices were made based on the best results.
Central leadership, hierarchal leadership and group-based goal realization
with multiple leaders were surveyed; however, it was ultimately decided to
have a monolithic society in which all agents can choose a goal according to
their capabilities and coordination.
Because of the lack of reliable high speed connection and high delay times,
we missed half of the tournaments and finally achieved the 6th place. Some
strength and weaknesses were found in the team design. For example, Simurgh
could parry very well because if an agent inspects an attacker, it informs
the team savior agents quickly. Choosing the helper role instead of zone
holder has a higher priority for repairers, so sometimes our zone broke dur-
ing the movement of our repairers. We did not put any emphasis on attacks
in Simurgh, especially breaking enemies’ zones, so other teams could gain
score simply when competing against us. The zone expanding algorithm has
some weaknesses that cause zone breaking. This is one of the problems we
hope to resolve for the next year’s contest. Furthermore, for the next MAPC
we hope to improve our attacks and design an algorithm for finding oppo-
nent’s zones’.
Gaia proved to be a good base methodology for Simurgh MAS development.
It was flexible, clear and understandable. Moreover J2SE did not impose any
worrying constraints on us.
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In the scenario, coloring algorithms could be improved. For example, zones
should be able to expand only in 3 or 4 levels of colored nodes, so that if
most agents of a team are disabled, the opponent can’t expand the zone to
the whole map.
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Short Answers

– What was the motivation to participate in the contest?
To improve team member’s knowledge of MAS.
– What is the (brief) history of the team?

Taking part in this contest was a project of ”specialized studies in soft-
ware engineering” course. Most of the material presented in the course
was about analysis, design and development of MASes.
– What is the name of your team?

Simurgh
– How many developers and designers did you have? At what level of ed-

ucation are your team members? From which field of research do you
come from? Which work is related?
Simurgh is compromised of three members, Sahar Mirzayi, Vahid Nateghi
and Fatemeh Eskandari. Mirzayi is a Graduate student at Arak University.
Her interests are soft computing and distributed systems. Nateghi and Es-
kandari are under graduate students at Arak University, interested in the
field of robotics.
– If some multi-agent system methodology such as Prometheus, O-MaSE,

or Tropos was used, how did you use it? If you did not what were the rea-
sons?
Our team used Gaia methodology for the analysis and design of Simurgh
because of its high reactivness property, accessibility of its notation and
modeling and flexibility. Even though Gaia has the same precision prop-
erty in comparison with Tropos, clearness and understandability of Gaia
were the main reasons for our choice.
– Is the solution based on the centralization of coordination/information

on a specific agent? Conversely if you plan a decentralized solution, which
strategy do you plan to use?
Simurgh used a decentralized coordination and cooperation mechanism
for implementing agents. In the beginning of each step agents share their
perception to other teammates via a shared channel and then update
their perception according to the received perception messages from the
channel. In each step, agents define some goals and inter-operate with
other agents to choose their final decision according to other agents’
goals, autonomously. When agents share their goal to teammates, if there
is a conflict between goals of two agents in current step, one of them
chooses to change its goal to prevent a conflict.
– What is the communication strategy and how complex is it?

The previous answer describes the communication strategy. Because each
agent communicates with its teammates via a shared channel, commu-
nication complexity in each step will be O(n), in which n is the number
of agents.
– How is the following agent features considered/implemented: autonomy,

proactiveness, reactiveness?
There is no central or hierarchical leadership. Each agent chooses a role
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according to perceived information from the model and other teammate’s
goals. Then negotiate with other teammates and choose the final action.
– Is the team a truly multi -agent system or rather a centralized system in

disguise?
Yes it is a decentralized implementation.
– How much time (man hours) have you invested (approximately) for im-

plementing your team?
About 600 man hours.
– Did you discuss the design and strategies of your agent team with other

developers? To which extent did you test your agents playing with other
teams?
We didn’t discuss with other teams but we test our team in test matches
and improve some defensive capabilities.
– Which programming language did you use to implement the multi-agent

system?
Java.
– Did you use multi-agent programming languages? Why or why not to

use a multi-agent programming language?
No, because of high learning curve and deadline approach.
– How have you mapped the designed architecture (both multi-agent and

individual agent architectures) to programming codes, i.e., how did you
implement specific agent-oriented concepts and designed artifacts using
the programming language?
Agents are distinct threads having a separate world model. Messages are
sent via a shared channel using apltk package.
– Which development platforms and tools are used? How much time did

you invest in learning those?
Nothing.
– Which runtime platforms and tools (e.g. Jade, AgentScape, simply Java

...) are used? How much time did you invest in learning those?
The communication complexity is not a major problem and doesn’t force
developers to use a runtime platform.
– What features were missing in your language choice that would have fa-

cilitated your development task?
Java doesn’t provide a convenient message broadcast mechanism. More-
over, synchronization points cause bottlenecks, because the independent
code lines after the point can’t execute and agents should stop decision
process until other reach the point.
– What features of your programming language has simplified your devel-

opment task?
Using an object-oriented programming language accelerates the design
and implementation process. Furthermore, using eis-massim, encapsu-
lates connection handling details.
– Which algorithms are used/ implemented?

Improved Dijkstra for path finding and some ideas in convex hull for
zone creating is used.
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– How did you distribute the agents on several machines? And if you did
not, please justify why.
All agents execute on the same physical machine, as the computation
cost of the agents is relatively low and as latency of connection to the
server was one of our biggest barriers, distribution of agents did not ap-
pear to be a wise design decision.
– To which extend is the reasoning of your agents synchronized with the

receive-percepts/send-action cycle?
The time of synchronization is less than 1 percent of each step length.
– What part of the development was most difficult/ complex? What kind

of problems have you found and how are they solved?
The difficulties faced during implementation, mainly stem from goal choice.
For example finding a good algorithm to create zones and keep them, re-
quired hundreds of test-runs.
– How many lines of code did you write for your software?

A bit more than 4000 lines of code.
– What is the main strategy of your team?

Cooperation with teammates and supporting them to realize better goals.
– How does the overall team work together?

In the beginning of each step agents share their perception to other team-
mates via a shared channel and then update their perception accord-
ing to the received perception messages from the channel. In each step,
agents define some goals and inter-operate with other agents to choose
their final decision according to other agents’ goals, autonomously. When
agents share their goal to teammates, if there is a conflict between goals
of two agents in current step, one of them chooses to change its goal to
prevent a conflict.
– How do your agents analyze the topology of the map? And how do they

exploit their findings?
Each agent has a world model that contains every detail captured from
perception messages. The most important element in the world model
is the map, a weighted graph in which both edges and vertices weighed.
The other elements found in the world model are teammate positions,
disabled teammates, repairer teammates, teammates who are in a zone,
savior teammates, each zone’s position and its score, explored water wells
and enemies’ positions.
– How do your agents communicate with the server?

Using eis-massim.
– How do you implement the roles of the agents? Which strategies do the

different roles implement?
If an agent has low energy, it recharges itself. If an agent is disabled, it
tries to approach helper until it acquires energy. However a disabled re-
pairer tries to repair other teammate first (helper role), and then try to ap-
proach other repairers to acquire energy. The zone holder role (all agent
types except explorers and saboteurs) first expands the zone by scatter-
ing from teammate in the right manner. If it can’t expand the zone and
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there is a bigger nearby zone, it may leave this zone and join the other. If
a zone holder senses a nearby probed node, it will change its position, so
that the score of the node is achieved in the current step. If a zone holder
doesn’t find a zone it tries to find the nearest zone holder agent and cre-
ate a zone with it. The water well explorer tries to survey new nodes in a
way that new non-probed vertices are visited. World Explorer role uses a
taboo list to fill the world model quickly. If a savior receives a help mes-
sage from a nearby teammate who has at most two node distances from
it, it will decide to attack the opponent in the next two steps. A chaser
gathers opponents’ position information and chases them with the goal
of attack. When an agent knows that there is an attacker in its node, it
chooses defender role and parries itself. Inspector chooses opponent an-
alyzer role when an attack occur.
– How do you find good zones? How do you estimate the value of zones?

Using following formula:

ZoneV aluei,j =
α ∗ scorei∑

k scorek
+
β ∗ distanceij∑

h distancehj
(2)

– How do you conquer zones? How do you defend zones if attacked? Do
you attack zones?
Finding enemies’ zones and conquering them was not a part of strategy
but agents can defend zones using the savior role.
– Can your agents change their behavior during runtime? If so, what trig-

gers the changes?
Some criteria trigger agents to change their role, such as: being disabled,
being in a zone, being near a better zone, possibility of an attack, being
at a low level of energy and existence of a disabled teammate.
– What algorithm(s) do you use for agent path planning?

Improved Dijkstra.
– How do you make use of the buying-mechanism?

To improve the attacking power of the team, attacker and savior roles are
allowed to use achievements’ points and buy items like a shield, a sensor
and three sabotage devices, when the team is in the risk of a huge attack.
– How important are achievements for your overall strategy?

Although Simurgh uses achievement points to make purchases, no spe-
cific plan was developed to increase achievement points.
– Do your agents have an explicit mental state?

Yes, the world model described later.
– How do your agents communicate? And what do they communicate?

It described later.
– How do you organize your agents? Do you use e.g. hierarchies? Is your

organization implicit or explicit?
There is no central or hierarchal leadership and data doesn’t route to any
specific agent.
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– Is most of your agents’ behavior emergent on and individual and team
level?
Mostly individually.
– If your agents perform some planning, how many steps do they plan

ahead?
Agents plan for one step and if the priority doesn’t force them to change
their goal, the last goal is maintained.
– What have you learned from the participation in the contest?

This contest was a very unique and valuable experience in design and
implementation of MAS for the team. The first lesson learned during the
implementation is that multi-agent development methodologies are very
diverse, and to make a proper choice of methodology, through investiga-
tions are needed. There are many multi-agent programming languages
and tools, some of which directly implement the multi agent theory,
while others extend existing languages to suit the MAS paradigm. The
second lesson learned from the contest was that different communica-
tion strategies are needed for decision making and realizing goals between
agents living in a same society. Different approaches were examined and
tested and choices were made based on the best results.
– Which are the strong and weak points of the team?

Simurgh could parry very well because if an agent inspects an attacker, it
informs the team savior agents quickly. Choosing the helper role instead
of zone holder has a higher priority for repairers, so some times our zone
broke during the movement of our repairers. We did not put any empha-
sis on attacks in Simurgh, especially breaking enemies’ zones, so other
teams could gain score simply when competing against us. The zone ex-
panding algorithm has some weaknesses that cause zone breaking. This
is one of the problems we hope to resolve for the next year’s contest. Fur-
thermore, for the next contest we hope to improve our attack and design
an algorithm for finding opponent’s zones’.
– How suitable was the chosen programming language, methodology, tools,

and algorithms?
Gaia proved to be a good base methodology for Simurgh MAS develop-
ment. It was flexible, clear and understandable. Moreover J2SE did not
impose any worrying constraints on us.
– What can be improved in the contest for next year?

Some changes in the scenario may help.
– Why did your team perform as it did?

Why did the other teams perform better/worse than you did?
It described later.
– Which other research fields might be interested in the Multi-Agent Pro-

gramming Contest?
Software development methodologies, scheduling using MAS.
– How can the current scenario be optimized? How would that optimiza-

tion pay off?
In the scenario, coloring algorithms could be improved. For example,

193 Technical Report IfI-12-02



zones should be able to expand only in 3 or 4 levels of colored nodes,
so that if most agents of a team are disabled, the opponent can’t make
zone expanding to the whole map.
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Abstract. This paper describes the process of developing a multi-agent
game system, our team is called Sorena. The system is implemented in
a graph like environment. At the beginning of the game, agents are dis-
tributed randomly in the game environment. The general goal of the
agents is to win the game, which can be achieved by performing actions
such as attack, probe, goto and communicating together. The analysis
is done by Prometheusmethodology. The JACK platform was used,
in order to enable the agents to communicate efficiently. It also has
Design View facility and JackBuild tool for compiling the code. Conclu-
sions are drawn on how the chosen methodology, tools and program-
ming language were suitable.

Keywords: multi-agent system, Prometheus, JACK programming lan-
guage, action

1 Introduction

Because of the agent oriented nature of this contest and its specific algo-
rithms, we decided to participate. We saw it as a great opportunity to ap-
ply some learnt theory in practice and gain useful multi-agent programming
experience. The quality of the contest and its participants were also impor-
tant reasons that motivated us. As a part of our course project, we were en-
couraged to participate in the contest and challenge our theoretical knowl-
edge in a full capacity. We did build team of three to analyze and implement
the multi-agent system which is called Sorena1(named after our team’s title).
The team consists of the following members:

– Alireza Hasanpour, M.Sc student, Department of Computer Engineering,
Faculty of Engineering, Arak University, Iran, system developer
– Naser Fallahi, B.Sc student, Department of Computer Engineering, Fac-

ulty of Engineering, Arak University, Iran, system analyzer
– Katayon Khatibifar, M.Sc student, Department of Computer Engineer-

ing, Faculty of Engineering, Arak University, Iran, system analyzer

1 Sorena was one of the ancient Iranian legends.
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This paper includes an introduction to the Sorena, system analyze and de-
sign software architecture, the main strategy of our team. Finally, it presents
conclusions on the lessons learnt and the areas that can be improved.

1.1 Relatedwork

N. Yadav et al [Yaday et al.,2010] used Prometheus methodology and JACK
programming language to design and implement their multi-agent system
for the Multi-Agent Programming Contest(MAPC) of the year 2009. Their
most focus was on designing their system with Prometheus methodology
whereas our most Concentration in this year’s competitions was on imple-
menting our multi-agent system with the use of JACK language.

1.2 Overview of scenario

This section briefly explains the game’s scenario which has been adapted
from the contest’s website. For more details see [MAPC,2011,Behrens et al.,2010].
This year’s scenario is about finding water well in Mars. The game environ-
ment is a graph-like environment. Each team has ten agents which consist
of tow Repairer, Sentinel, Explorer, Inspector and Saboteur. Each agent performs
a specific action. The Repairer, Explorer, Inspector and Saboteur agents perform
repair, probe, inspect and attack actions, respectively. Also all the agents can
perform goto, skip, recharge, buy and survey actions and but only the Repairer,
Saboteur and Sentinel agents can perform parry action.

The score is computed by summing up the values of the zones and the
current achievements for each step. The step is number of game simulation
step and the zone is a subgraph from the game’s graph that agents occupy
and color it according to the graph’s coloring algorithm introduced in the
scenario. The achievement is earning money by performing some specific
actions for example doing the probe, survey, inspect, attack, and parry for 5 or
10 or 20 or times, correctly.

2 SystemAnalysis andDesign

The Prometheus methodology was used for design of this multi-agent sys-
tem.

– This methodology can be used for development of intelligent agents which
use goals, beliefs, plans, and events [Padgham et al.,2002,Padgham et al.,2004].
– The methodology facilitates tool support. The Prometheus Design Tool

(PDT) [Thangarajah et al.,2005], which is freely available and could be
plugged in Eclipse.
– Prometheus is mainly used by industrial software developers and under-

graduate students [Padgham et al.,2002].
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This methodology consists of three phases. Phase one is system speci-
fication. This phase focuses on identifying the goals, functionalities of the
system, inputs (percepts) and outputs (actions) [Padgham et al.,2004]. Phase
two is architectural design. This phase uses the outputs from the previous
phase to determine type of the system agent and how they will interact
[Padgham et al.,2004]. Phase three is detailed design. This phase concentrates
on the internals of each agent and how it will complete its tasks within the
whole system [Padgham et al.,2004].

In the first phase, the general goals of the system were specified as they
are showed in Fig. 1, which also could be the main strategy of our team. To
win the game, agents should make a zone, extend and keep it and collect-
ing defined achievements. Attacking opponent team agents and destructing
their zones prevents opponent team from scoring which also leads to win
the game (see Fig. 1).

Fig. 1.Our proposed goal model

In order to make a zone, the designers decided that the agents being gath-
ered by a Sentinel agent in every 15 steps. The reason of choosing this kind of
agent is that it has wider overview of the environment in comparison with
the others. This number of steps obtains from running of our code in the test
match with other teams and with trial and error way. After the agents came
together in neighborhood of the Sentinel agent, they walked to different po-
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sitions randomly. These processes (gathering and walking) were being done
repeatedly. This strategy chases the following goals:

1) Making and extending the zones
2) Unpredictability of the agents
3) Destruction of the opponent zones by random walks
4) Preventing the opponent’s Saboteur agents in disabling our agents
5) Speeding up the process of repairing disabled agents
6) Agents’ movement in all the map

In this multi-agent system communications is simple and obvious the
types of communications are described as follow:

– The disabled agent calls Repairer agent by sending its position and the
word ”disabled” to the Repairer.
– A Sentinel agent calls other agents by send them the position of its neigh-

bors and word ”goto”.
– Sending word ”parry” to agents by Inspector agent

The agents work independently and share the results of their actions. For
example after an agent does survey action, writes edges’ weight in a shared
matrix, so all agents could use it. However each agent plays an unique role,
which satisfies its independency and autonomy. In the other hand, the agents
have to move according the plan, therefore, they are proactive, too. Calling
agents by Sentinel agent at the beginning of the game and answering to the
call are samples of the agents’ proactivity. The Repairer action is another ex-
ample of the agent’s capability to react in different situations. When a Re-
pairer intends to make a zone but at the same time receives a message from a
disabled agent, its priority reaction will be fixing that disabled agent.

Each agent has been assigned different roles. A number of these roles are
exclusive and the base of this game is the agents’ coordination. Our plans are
decentralized and all the agents in the map communicate with each other,
so they aren’t controlled centrally.

We have spent 140 man hours for analyzing and designing this multi-
agent system approximately, and it took us the same amount of time to im-
plement it. Through this project we have discussed our plans, analysis, de-
sign and implementation with other participants. We did some preliminary
test matches with Nargel team before the main contest.

3 Software Architecture

The JACK programming language was used to implement the agents. JACK is
a totally multi-agent based programming language that provides many facil-
ities for agent oriented concepts, like agent communication [Busetta et al.,1999]
[Winikoff,2005]. Also JACK’s graphical development environment simpli-
fies developing of agent based applications [JACK-Manual, 2005]. Learning
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how to work in this environment is simple for programmers who are famil-
iar with object oriented environments. In addition of agent communication,
this language provides the following facilities for programmers:

– A simulator to show agents communication
– Design View facility, which can model and present the designed system

by graphical elements
– Capability of been compiled by JackBuild

Due to the technical difficulties, we could not connect to the remote server
via JACK, so we added our communication agent codes to the organizers test-
ing agent codes that existed in their web site [MAPC,2011]. In order to do
this, we inherited testing agent from Agent class of JACK. So the agents were
able to connect to the MASSim server [Behrens et al.,2009] as well as speak
with each other through JACK.

In order to allow the agents to communicate with each other, first we
implemented the capability of sending and receiving messages for all the
agents, and then compiled it by JACK compiler. The Fig. 2 presents the Sabo-
teur agent’s code written in JACK agent programming language. In this code,
the PostEventandWait method has been used to send a message to the other
agents and waits for their respond. The agentname and the Msg String are pa-
rameters of this method.

Fig. 2. Saboteur agent’s code
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One of the JACK compiler’s features is that after compiling codes it pro-
duces files with java type. Then we run these codes to get files with class type.
And finally, we added these files to Javaagent package to build communica-
tion between the agents.

One of the disadvantages of this language is the lack of technical support-
ing. We had problems in connecting to the server, so we asked help from dif-
ferent people including JACK developers, but we did not get any responses to
our questions.
Dijkstra was the main algorithm that we used for agent’s path find-

ing. This algorithm uses an adjacent matrix in order to find the correct path
through the graph [Neapolitan et al.,2004]. As we have been completing this
matrix through the game, the agents were able to find a better path at the
later steps of the game.

We have used simple variables, linked lists and arrays and controlled our
plans by simple variables. For example at the beginning of the gathering plan
of agents, we initialized a variable, and after reaching an acceptable goal its
value was changed.

Our agents are synchronized with the receive-percepts/send-action cycle.
Server sends perception to the agents. They receive the perception and in-
terpret them to update its internal world model. Each agents has three gen-
eral goals: pre defined goals for every agent, collaborative goals with other
agents (e.g.make a zone) and proper reaction against environmental condi-
tion. Based on the produced beliefs a proper goal will be selected and then
by the communicating with other agent a plan will be selected. Accordingly,
a proper action will be selected too(see Fig. 3).

Concerning the small number of agents (10) for each team and constant
roles for each agent and using computers with high performance, we did not
have to distribute agents on the several machines. Computer that we used
for the contest was able to run the testing server for two teams at the same
time and shows their map and agent walking without any interruption.

Learning JACK took us one month. The most difficult part was connect-
ing to the server. We wrote 2000 lines for our software approximately.

4 Strategies, Details and Statistics

Each agent acts individually and according to a predefined plan. However, in
some situations like lacking of a complete adjacent graph, they might walk
randomly to a neighbor node to reach their goal. According to our strategy,
agents should know the environment in order to walk towards the Sentinel
agent. In order aiming this goal, we defined two shared lists which could
be accessed by all the agents. For getting to know the environment all the
agents use the survey action and save position of the nodes which have been
surveyed in one of the lists and consequently weights of the edges are saved
in a matrix. First, all the matrix’s cells are filled by a very large number and
after each survey action these cells which present the edges’ weight change. It
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Fig. 3. Software Architecture

should be considered that for a better path finding and coming over the bad
result of Dijkstra algorithm in some situations, we fill cells related to visited
edges by a predefined constant number, too.

While Sentinel agent calls other agents to gather on its neighboring nodes,
each agent in its movement path does its role. For example, if Saboteur agent
faced an opponent agent on its way to the destination node will do the attack
action. The Explorer agent also probes every node on its path. Meanwhile if an
agent become disabled by the opponent Saboteur agent, it stops moving and
sends a message to the Repairer agent which contains its node id and a string
value to say it is disabled. The Repairer agent as soon as receive this message
and seeing the word ”disable” in it, will run Dijkstra algorithm with the po-
sition of disabled agent and itself as destination and source respectively, and
this algorithm sends a list of nodes -which are the path from Repairer agent to
the disabled agents- to the repairer. By repairing the disable agent, these two
agents will continue their move to the specified positions. If the agents move
and communicate properly, they could extend their zone in all 15 steps. We
are working on improving our strategy, in order to score higher in the next
year contest. However, as the Sentinel agent moves around the map in every
15 steps, it calls the agents to the map’s nodes(see Fig. 4). With this strategy
we could attack the opponent’s zones and destruct them and our gained zone
had high points (more than 50 from our point of view) in some steps and it
was less than 50 in some other steps.
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(a) (b)

Fig. 4. Agents movement

The achievements’ points are important, so we try to gain as much as
money that we could and save it in order to get more scores in each step.

All of our agents are in the same level and none of them get orders from
the others. As explained in section 3, we appoint the Sentinel agent to call the
others and gather them together. The following piece of code shows how the
Sentinel agent recalls the other agents to its neighboring nodes(see Fig. 4).

As it can be seen in the code(Fig. 5), the agents are distributed in the
Sentinel agent’s neighboring node. For example, if the Sentinel agent has 3
neighboring nodes, the other agents as a group of 3 accommodate them-
selves on each of the neighboring nodes. When the variable firstgoal is filled
with the string value ”goto”, this code segment will run. The variable ratio
keeps the number of neighboring teammate agents of Sentinel agent which
is calculated by the division of total number of agents (i.e. 10) to the num-
ber of neighboring nodes of Sentinel agent. Then the Sentinel agent sends
the position of its neighboring nodes to the other agents by calling ”Con-
verse” method. Of course the method ”Converse” will call PostEventandWait,
too(see Fig. 2). When the agents receive the message, they move toward the
Sentinel and also perform their specific roles as they move.

5 Conclusion

Participating in the MAPC was a good opportunity for us to improve our
agent oriented programming knowledge and compare our skills in this field
with different teams from other countries. Furthermore we gained very use-
ful insights which could be used to guide other students who want to learn
this kind of programming theoretically or practically.

Hard working of members and acceptable functionality of determined
strategy are strong points of our team. Although our weak strategy in keep-
ing zones, some members who left the team during design phase and also
spending too much time on learning JACK are weak points of our team. We
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Fig. 5.Calling agents by Sentinel agent

chose the Prometheus methodology and JACK as programming language.
JACK is an efficient language and in addition, Prometheus produces JACK
pseudocode and there is a consistency between Prometheus and this lan-
guage [Bergenti et al.,2004,Yaday et al.,2010]. One area that we are working
on it, is improving the path finding algorithm. Our algorithm chooses the
shortest path that may include more steps, but we are developing another
algorithm which base on the number of steps in each path and we also work-
ing on using the agent-oriented concepts of JACK [JACK-Manual, 2005] for
example Database and Capability instead of using form simple variables.

The scenario has been changed a lot at this year and there is room for im-
provement. We propose to add the capability of changing the agents’ role by
spending money. We also suggest to hold the contest in different countries
and then each country’s finalist compete against other countries opponent.

Due to the short preparation time and losing tow team members during
the project we did not get a good result. We take this opportunity to congrat-
ulate the winning team.

Acknowledgments. We would like to acknowledge the help and support
of the students who have participate in the MAPC in the previous years for
their comment and feedbacks.
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Short Answers

1.1 The quality of the contest and its participants were reasons that moti-
vated us.

1.2 This contest was our course project.
1.3 Our team name is Sorena.
1.4 Our team consisted of three students -one system developers and two

designers- that two of them were postgraduate students, one was under-
graduate student.

1.5 All members of the team are educated in software engineering.
2.1 We used Prometheus methodology as: in the first phase, called system

specification, we identified main goals and requirements of the system.
In the next phase named architectural design, we specified the way in
which agents communicate with each other or with server. And in the
last phase of this methodology means detailed design, we analyzed be-
havior of the agents in all parts of the system.

2.2 No, We had a decentralized main strategy that all of the agents were gath-
ered and then distributed in the map repeatedly.

2.3 Our agents communicated with each other for gathering, repairing and
attacking by the simple strategy.

2.4 Because each of agent kinds had an unique role, which satisfies its the
autonomy. Calling agents at the beginning of the program is a sample of
proactiveness. Reacting of the Repairer to the message of a disabled agent
shows reactiveness.

2.5 Yes, it’s a truly multi-agent system.
2.6 We spend 140 man hours for implementing this system approximately.
2.7 Yes, we discussed with Nargel team and played some testing matches with

them.
3.1 We used JACK programming language.
3.2 Yes, this language has many capabilities like facilitating agent communi-

cation.
3.3 We couldn’t use all agent oriented concepts of JACK, so we used simple

variables, arrays and linked lists to simulate these concepts.
3.4 We used JACK agent platform.
3.5 We used JACK runtime Environment and invested about one month to

learn it.
3.6 Lack of a strong supporting for this language was our biggest problem.
3.7 Communication between the agents simply and quickly.
3.8 Our main and most important algorithm was Dijkstra which was used to

path finding.
3.9 Because of small number of agents and using a computer with high per-

formance, we did not distribute agents on several machines.
3.10 Our agents are synchronized with the receive-percepts/send-action cy-

cle. After receiving percept from server, each agent analyzes it, prepared
it plan then choose the best action to reach the goal and sent the action
to the server.

205 Technical Report IfI-12-02



3.11 We had problem in connecting to remote server by JACK, so we added
our JACK agent communication codes into the organizers testing agent
codes.

3.12 We wrote 2000 lines for our software approximately.
4.1 We gathered all agents by one specified agent and then dispersed them

repeatedly.
4.2 Communication of agents has described in part 3-2. Also some variables

like adjacent matrix of graph and list of surveyed nodes were shared be-
tween all the agents.

4.3 We converted graph of the map into a matrix, so we could use Dijkstra
algorithm for path finding.

4.4 As we used codes of testing agents, we did not handle manner of commu-
nication of agents with the server.

4.5 During to do making zone plan, all the agents perform a specific role. For
example, the Saboteur agent attacks the opponent agents.

4.6 We built a zone by gathering agents and extended it by moving agents to
neighbor nodes and gathered them after some steps again.

4.7 We described in 4.6 how we made a zone, and because of gathering agents
repeatedly, we could keep it, however it’s a weak strategy. Also by moved
agents to neighbor nodes, we could attack others’ zones.

4.8 Our agents had constant behavior during the game.
4.9 We used Dijkstra algorithm.

4.10 We used score of achievement and did not buy anything.
4.11 We try to gain as much as money that we could and save it in order to get

more scores in each step.
4.12 No, they do not have such state.
4.13 See 4.2.
4.14 All of our agents were in the same level and none of them got orders from

another.
4.15 Each agent acts individually and according to a predefined plan.
4.16 By our strategy the agents were called every 15 steps, so they could build

a zone in 15 steps.
5.1 Attending in this contest was a good opportunity for us to improve our

agent oriented programming knowledge.
5.2 Hard working of the members and acceptable functionality of our strat-

egy were strong points of our team. But weak strategy in keeping our
zones was the negative point of our team.

5.3 We are content of using JACK programming language, Dijkstra algorithm
for path finding, Prometheus methodology and PDT tool of it, although
we could use them in a better way or optimize them.

5.4 Adding capability of changing agents’ role by spending money.
5.5 Due to the short preparation time and losing tow team members during

the project we did not get a good result, but the best teams by good strat-
egy and spending sufficient time could get acceptable results.

5.6 This contest seems to be complete.
5.7 We think this scenario is the most interesting and exciting one between

all the previous scenarios and we congratulate organizers of this contest.
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TUBTeamDescription

Axel Heßler, Thomas Konnerth, Pawel Napierala and Benjamin Wiemann

Technische Universität Berlin, Germany

Abstract. We describe our contribution to the Multi-Agent Program-
ming Contest 2011, which has been prepared by students and researchers
of the DAI-Labor at TU Berlin, Germany, using the JIAC V agent frame-
work and the agile JIAC methodology.

1 Introduction

Our team for the Multi-Agent Programming Contest 2011 [Behrens et al., 2010]
is called “TUB” and has been developed in the course “Multi Agent Contest”1

by the following students: Pawel Napierala and Benjamin Wiemann, super-
vised by the following agent researchers: Thomas Konnerth and Axel Heßler.
We have invested 640 hours approximately to create the contest version of
our system finished in third place.

2 SystemAnalysis andDesign

During the development of our team we roughly followed the JIAC method-
ology, which can be described as a bottom-up and agile methodology. We
start with domain analysis, which is to build a first ontology: find the con-
cepts of the domain, their structure and relationships to each other: agents,
own team, opponents, nodes, edges, visited, probed, surveyed, weight. Paral-
lel to that, the main requirements are collected: just one requirement in the
case of the contest, to maximise the score.

In Figure 1, the first version of the domain model is shown. A World con-
sists of Vertices and Edges. The world is occupied by Bots that are organized by
Teams. Under certain circumstances bots form Zones, which are collections
of vertices that are populated by only bots from one team. During many it-
erations the ontology is extended by more concepts, properties and associa-
tions. The ontology of the TUB team is directly transformed into Java classes.
The transformation to OWL would have been possible but offers no added
value in this scenario.

As a second step the methodology says: make a role model and a user in-
terface (UI) prototype. A role is specified by the a number of capabilities or be-
haviours and the relationships to other roles. Identifying the roles was an
easy task because they are easily collected from the scenario document. We

1 Project 0435 L 774 at TU Berlin, Germany
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Fig. 1. TUB domain model (first version)

then assigned simple and basic capabilities to the roles. As many of them
were identical in each role, we created the generalised role of the Mars in-
vader, which is a collection the capabilities that all roles share, such as sur-
veying, charging and moving. All other roles inherit from the invader role
and add special capabilities such as probing, introspecting, and so on.

The role model was subject to many iterations. In Figure 2, an interme-
diate version of the role model is shown that is very close to the final role
model. In principle, every contest agent in this role model could take every
role (the ContestAgentRole), but during this contest the roles are static prop-
erties given by the contest server to every agent in the team. Common ca-
pabilities (goto, survey, buy, recharge) are implemented to the DefaultDecision-
Bean component. Special capabilities (probe, inspect, attack, repair) are imple-
mented in the corresponding role specific component (e.g. ExplorerDecision-
Bean or SaboteurDecisionBean). Every agent instance has a specialization of
the ServerCommunicationBean component that the credentials for authenti-
cation. Finally, every agent is instantiated once on the ContestNode, which
provides the infrastructure for acquaintance and inter-agent communica-
tion. The role model has been generated with the help of the AgentWorldEd-
itor (AWE), which is part of the JIAC V tool suite Toolipse. The AWE generates
configurations for all agents and agent nodes that are used by the JIAC V run-
time at startup.

The UI prototype is a simple visualisation of the world graph. The prob-
lem here was that we could not find a solution to draw the graph in a repetable
way during preparation. As a workaround we patched the contest server to
send the coordinates that project the graph to a grid as used by the moni-
tor tool. The next step is implementing the simple and basic behaviours and
then evaluate their function. After several iterations, until the basic actions
can be reliably achieved by the agent, more complex capabilities are added,
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Fig. 2. TUB role model

such as finding the most promising node to occupy or calculate the shortest
or fastest path to an arbitrary node, and so on.

Our system is completely decentralised. Every agent is capable of taking
every role and doing everything (depending on the role). Also, the Zoning
can be done be every agent, but we have decided to let only one agent calcu-
late the Zoning if necessary. This agent is selected among and by interested
agents that want to know where to position in the zone, using a simple vot-
ing protocol. The result is then calculated by the selected agent and shared
with the other interested agents.

Regarding the communication strategy of our team, we follow our suc-
cessful approach used from 2007 to 2009 (e.g. in [Heßler et al., 2009]) to dis-
tribute all perceptions and intentions among all other agents, where we could
reach an appreciable enhancement of the team performance. We know that
this approach does not scale very well as the number of perceptions and in-
tentions sent around is 2n ∗ (n − 1) per cycle, but within a small agent team
it works perfectly.

When it comes to coordination aspects we distinguish between explicit
and implicit coordination. Implicit coordination can be achieved when the
agents share their intentions. This notion of intention is often misunder-
stood when discussing the approach in the agent community. The intention
in our case more often reflects a perform or achievement goal than the action
that the agent has decided to execute. Taking the intentions of other agents
into account, the actual agent can adopt the intention when it has a better
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utility or even dismiss its own decisions in case other agents will perform bet-
ter. We have built only a few explicit role-based coordination strategies into
our agents, e.g. among explorers and between two roles, e.g. the collabora-
tion between inspector and saboteur, or the unhealthy agent requesting the
nearest repairer.

We have implemented general agent attributes such as autonomy, proac-
tiveness and reactiveness as follows: JIAC V agents have their own thread
of control and decide and act autonomously, i.e. each agent decides for it-
self, what general action it should take (self-protection, role-specific). We see
the agents with low health level proactively seeking the repairer’s help using
a simple request, whereas probing or surveying has been implemented as a
simple reactive behaviour: if the node is unprobed then probe.

For testing the team performance we have developed another internal
team. Our sparring dummies employed simple swarm algorithms for coor-
dination and were used for testing the real team.

3 Software Architecture

We have used the JIAC V agent framework to implement the contest multi-
agent system (MAS) of our TUB team. Every agent consists of a number of
components: memory, server communication, inter-agent communication,
perception processing and one component per role.

We used the memory of the agents to store the world model for the con-
test, i.e. the graph, in a central place for each agent. All agents forward their
perceptions to all other agents via the communication. Thus each agent has
a complete model of the world as it is currently known to the team. This
model can then be accessed by the role specific components, the zoning cal-
culation or accessed for debugging.

The server connection and the processing the of the server messages are
handled by a dedicated component that receives the perceptions, processes
and stores them in the agents memory, and sends the action of the agent
back to the server each turn.

As the JIAC V communication mechanism allows the agents to register
for arbitrary messageboxes and groups, we could implement the inter-agent
communication in a very efficient way. Messages to individual agents can
simply be send to the corresponding message box, messages to the team are
send to a group address via multicast. Both types of messages can be send
with a simple method call.

For our agent researchers the contest is always an excellent reliability bench-
marking of the framework, and also a test case for teaching principles of
agent programming. We left out the declarative agent language because we
have experienced longer training periods and fewer usable code. The Eclipse
IDE with several useful plugins is the main develoment tool although some
developers prefer a simple editor with syntax highlighting and a separate
build system.
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The system can be distributed over several machines if available, without
changing any line of code, even at runtime. This is one of the features of the
JIAC agent framework [Hirsch et al., 2009] that is usually used for MAS (self-
)administration [Kaiser et al., 2010,Thiele et al., 2009]. However, we did not
use this feature due to a lack of available hardware during the contest.

As far as algorithms are concerned we used the opportunity to imple-
ment two different pathfinding algorithms: Bellman-Ford and Dijkstra. The
zone calculation algorithm has been adopted from the server source code
and is used for Zoning. Synchronization: reasoning is triggered by new per-
ceptions. The best action for the current situation is calculated. We tried to
have the reasoning cycle complete before deadline.

4 Strategies, Details and Statistics

We intended to have a twofold stategy for our agent team: First, the single
agent follows a simple, straightforward achievement collection strategy, e.g.
if a node is not yet probed, the agent has the the capability to probe and
is situated on the unprobed node then it will try to probe until the probe
action has been successfully achieved. And second, the agent follows an al-
gorithm that we haved called “Zoning”, i.e. two or more agents try to create
and extend a zone in order to achieve the maximum zone score gain, i.e. to
occupy the best zone (relative to given current positions). We try to localy
optimize zonescore in the next move. Thus the zone is not defended as such.
If an agent has to move, the best possible neighbour is chosen. Secondary
strategy: to attack and repair as good as possible.

Explorers try to explore (probe, survey) the whole map, closest unknown
node first. If the other explorer is already underway, the explorer chooses
the next one. When all nodes/edges are explored the explorers contribute
to Zoning. Exploitation is done by using the best direct neighbours for the
next zone (MinMaX-style). Repairers repair the closest damaged bot. in Case
no bot is damaged they do some Zoning. Saboteurs sabotage the closest ac-
tive opponent. If all opponents are inactive they do Zoning. Sentinels al-
ways build zones. And, finally, inspectors inspect the closest opponent. If
the other inspector is already underway, the inspector chooses next oppo-
nent. When all opponents are inspected, the inspectors contribute to Zon-
ing. We have implemented the decision between actions as a state machine
for gamestates (Exploring, Repairing, Zoning, etc.).

In general, all roles follow some simple rules: they evade when the op-
ponent saboteurs come close. If an agent is damaged it approaches the clos-
est repairer. They always recharge when possible and when adjacent to non-
surveyed edges they help in surveying.

The “Zoning” algorithm works as follows:

– All agents that decide to participate in the zoning publish their intention
to do so with a multicast message to all other agents.
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– One agent (usually the first to publish its intention) volunteers to per-
form the zoning calculations.
– After a certain deadline has passed (usually about 30% of the time avail-

able for the turn), the zoning is calculated for all agents that intended to
participate.
– The current zone score is calculated.
– For all participating agents, all possible moves and the corresponding

new zone scores are calculated.
– The combination of moves that lead to the best zone score for this turn

is selected.
– All participating agents are informed, which move they should execute.
– Each agent decides, whether it is “safe” to execute the move, or if it is

better to avoid e.g. opposing attackers.

The decision to have only one agent perform the zoning calculation was
made, because of the complexity of the calculation. As the calculation is
rather expensive, it seemed more appropriate to switch to a hierarchical ap-
proach. However, the decision about the actual move is still left to the in-
dividual agent, as it does have to take the positions and possible moves of
opposing agents into account. However, if we had incorporated this into
the calculations of the zoning algorithm, it might have improved the per-
formance of the zoning.

5 Conclusion

The TUB agent team solved the problem of exploring and exploiting the
Mars resources. We used the contest to improve our skills in teaching agent
programming principles, i.e. the two researchers of the team had chosen a
hands-off approach when it came to implementation. We also appreciate the
new Mars scenario and higher scenario complexity.
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Short Answers

1.1: Our motivation was to employ and evaluate the JIAC V framework. Fur-
thermore we wanted to teach agent oriented principles to the students.

1.2: The team was developed in a project course for master students.
1.3: The name of the team is “TUB”.
1.4: We had 2 bachelor students working on the team who were supervised

by to agent researchers.
1.5: We come from the field of Agent oriented technology.
2.1: We used the JIAC methodology.
2.2: The solution is based on sharing all knowledge between all agents, thus

allowing them to come to identical solutions about the best course of
action while still having decentralized decisions. However, for the zon-
ing calculation, we use a centralized approach, as these calculations are
rather expensive to compute.

2.3: The communication works in two steps. In the first step, all agents share
their perceptions with all other agents via multicast messages. In the sec-
ond step, once an agent has committed to a course of action, it informs
all other agents about his actions. If actions collide (i.e. two agents try to
probe the same node), one of the agents (usually the one that was slower
to publish its intention) selects another action. Thus for each cycle we
have one Multicast message (n-1 individual messages) and one normal
message per agent, resulting in 2n*(n-1) messages for n agents.

2.4: Each agent decides autonomously about its course of action. It reacts to
the actions of other agents and corrects its decisions if collisions occur.

2.5: As the agents make their decisions autonomously and do not rely on a
central instance for coordination, we regard it to be a true decentralized
system.

2.6: We invested approximately 640 hours of work.
2.7: We tested our team in the training matches that were organized before

the actual tournament started.
3.1: Our agents were implemented with the JIAC V framework which is Java

based.
3.2: We did not use the multi-agent programming language JADL that comes

with the JIAC V framework, as we did not have enough time to train the
bachelor students in this language. Furthermore, we have made the ex-
perience, that most work on the contest requires work on the algorithms,
rather that work on “agent” problems such as coordination.

3.3: For the communication and coordination of the agents, we used the
appropriate JIAC V concepts. The individual functionalities for the roles
of the agents were implemented in dedicated components for each role.

3.4: Most of the work was done in Java with help of the Eclipse IDE. The Java
implementations relied on the JIAC V framework. It took the bachelor
students approximately two to three weeks to become familiar with this
framework (they were already familiar with Java and Eclipse).

3.5: As a runtime platform we used JIAC V.
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3.6: No features were missing.
3.7: Infrastructure and communication services were readily available. Fur-

thermore, the creation and configuration of the agents was simple and
efficient.

3.8: We tried the Bellman-Ford and Dijkstra algorithms for path finding.
The final solution however was based on the A-star algorithm, as the
other algorithms proved to be to costly to be calculated by all agents.

3.9: We did not distributed our agents across different machines, as our one
server was more than capable to handle ten agents.

3.10: The decision making was triggered by the receiving of perceptions and
was finished before the timeout for each cycle.

3.11: The most complex problem of the contest for us was the balancing of
repair- and attack-actions. Furthermore the zoning algorithm for calcu-
lating the optimal placement of the agents proved to be rather complex
when opposing agents were involved.

3.12: We did write approximately 8000 lines of code including comments.
4.1: Our agents try to optimize achievement and zoning points.
4.2: The agents share their perceptions and intentions.
4.3: The agents try to probe and survey all nodes and edges of the graph.

The results are propagated to all agents.
4.4: We have implemented our own connection to the server and our own

parser for the perceptions.
4.5: Each role is implemented in a dedicated component for the agents which

is later configured into an agent. The explorers try to explore the whole
graph as fast as possible. The repairers try to keep all teammates alive.
The attackers try to disable the closest opposing agents. The inspectors
make one pass to inspect all opposing agents in order to get the achieve-
ment points. All agents that have no role specific tasks left try to build a
maximal zone.

4.6: For our zoning algorithm, all agents that want to participate in a zone
communicate this. Then the resulting zones for all possible moves of
these agents are calculated and the best zone is selected, resulting in the
agents to execute the appropriate moves. The zone score is calculated
based on the known values of the nodes. Unknown nodes are valued
with one point.

4.7: We do not explicitly attack or defend zones. Our attackers simply attack
the closest opposing agents.

4.8: Explorers contribute to zoning when they have finished the exploration.
Repairers contribute to zoning if no teammate needs repairs. Attackers
contribute to zoning if all opponents are disabled. Inspectors contribute
to zoning of all opponents have been inspected. Repairers and Attackers
may return to their default behavior if it is applicable again.

4.9: The final team uses the A-star algorithm.
4.10: The attackers buy attack-power and health.
4.11: We try to maximize the earned achievement points.
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4.12: Each agent has a central fact based (based on Linda like tuple space).
The content of this fact base constitutes the mental state of the agent.

4.13: The agents communicate via messages that are equivalent to inform
speechacts. They communicate their perceptions and intentions.

4.14: The organization of our agents is decentralized and role-based.
4.15: Individual behavior of the agents is programmed. Team based behav-

ior is emergent.
4.16: Our agents do not plan ahead.
5.1: We underestimated the potential of aggressive attackers. Furthermore,

algorithms with a high computational cost like the Dijkstra algorithm
are applicable, but are too costly if all agents calculate them at the same
time. This could be delegated to a specialized agent in future contests —
the so called path finder.

5.2: Our zoning algorithm worked good. However, we did not find the opti-
mal strategy for our attackers and repairers.

5.3: The development of our team worked fine.
5.4: The organization of the contest was very good. The scenario was also

good.
5.5: Although we implemented two different teams during development for

testing purposes, we underestimated the effectiveness of aggressive play.
During the training matches we tried to improve our attackers, but were
unable to make them truly competitive with the winning team.

5.6:
5.7: The balance of achievement points and aggressive play styles can be

modified in order to give the contest a different character. This is however
not so much of an optimization. It rather is a way to keep the contest
interesting.
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