
The Multi-Agent Programming Contest 2012

Michael Köster1, Federico Schlesinger1,

and Jürgen Dix1

Department of Informatics, Clausthal University of Technology,
Julius-Albert-Str. 4, 38678 Clausthal-Zellerfeld, Germany

{dix, michael.koester, federico.schlesinger}@tu-clausthal.de

Abstract. The Multi-Agent Programming Contest, MAPC, is an an-
nual, community-serving competition that attracts groups from all over
the world. Its aim is to facilitate advances in programming multiagent
systems (MAS) by (1) developing benchmark problems, (2) enabling
head-to-head comparison of MAS’s and (3) supporting educational ef-
forts in the design and implementation of MAS’s. We report about its
eighth edition and give a detailed overview of the participants strategies
and the overall contest.

1 Introduction

This paper serves as an introduction to the subsequent papers in this proceedings
volume, each of which describes a team that participated in this years edition.
We give a comprehensive overview of the Multi-Agent Programming Contest1

2012, an annual international event that has started in 2005 as an attempt to
stimulate research in the field of programming multi-agent system by 1) iden-
tifying key problems, 2) collecting suitable benchmarks, and 3) gathering test
cases which require and enforce coordinated action that can serve as milestones
for testing multi-agent programming languages, platforms and tools. In 2012 the
competition was organised and held for the eighth time.

Research communities in general benefit from competitions that attempt to
evaluate different aspects of the systems under consideration and furthermore
allow for comparing state of the art systems, act as a driver and catalyst for
developments and pose challenging research problems.

In this paper we (1) briefly introduce the Contest and its infrastructure, (2)
elaborate on the 2012 scenario and its differences with the 2011 edition, (3)
introduce the seven teams that took part in the tournament, and (4) present
results and findings acquired before, during and after the tournament.

More detailed information about the strategies of the teams are to be found
in the remaining six papers in this volume.

1 http://multiagentcontest.org

http://multiagentcontest.org


1.1 Related Work

The Multi-Agent Programming Contest has generated quite a few publications
over the years [9,10,11,3,4,1,8]. For a detailed account on the history of the
contest as well as the underlying simulation platform, we refer to [1,8,5,6]. A
quick non-technical overview appears in [2].

Similar contests, competitions and challenges have taken place in the past
few years. Among them we mention Google’s AI challenge2, the AI-MAS Win-
ter Olympics3, the Starcraft AI Competition4, the Mario AI Championship5,
the ORTS competition6, and the Planning Competition7. Every such competi-
tion rests in its own research niche. Originally, our Contest has been designed
for problem solving approaches that are based on formal approaches and com-
putational logics. But this is not a requirement to enter the competition.

1.2 The contest from 2005–2012

From 2005 to 2007 we used a classical gold miners scenario [10] and introduced
the MASSim platform: A platform for executing the Contest tournaments.

From 2008 to 2010 we developed the cows and cowboys scenario which has
been designed to enforce cooperative behavior among agents [4]. The topology
of the environment was represented by a grid that contained, besides various
obstacles, a population of simulated cows. The goal was to arrange agents in
a manner that scared cows into special areas, called corrals, in order to get
points. While still maintaining the core tasks of environment exploration and
path planning, we also made the use of cooperative strategies an obligation.

The agents on Mars scenario, used during the 2012 edition and discussed in
this paper, was firstly introduced in 2011 [5]. In short, we have generalized the
environment topology to a weighted graph. Agents were expected to coopera-
tively establish a graph covering while standing their ground in an adversarial
setting and reaching achievements.

2 MAPC 2012: Agents on Mars

In this section we give a detailed overview of the 2012 agents on Mars scenario
and point out differences to the scenario from 2011.

2.1 The Scenario

It is now a tradition to accompany the technical description of each scenario
with a motivating little story:

2 http://aichallenge.org/
3 http://www.aiolympics.ro/
4 http://eis.ucsc.edu/StarCraftAICompetition
5 http://www.marioai.org/
6 http://skatgame.net/mburo/orts/
7 http://ipc.icaps-conference.org/



In the year 2033 mankind finally populates Mars. While in the beginning
the settlers received food and water from transport ships sent from earth
shortly afterwards – because of the outer space pirates – sending these
ships became too dangerous and expensive. Also, there were rumors going
around that somebody actually found water on Mars below the surface.
Soon the settlers started to develop autonomous intelligent agents, so-
called All Terrain Planetary Vehicles (ATPV), to search for water wells.
The World Emperor – enervated by the pirates – decided to strengthen
the search for water wells by paying money for certain achievements.
Sadly, this resulted in sabotage among the different groups of settlers.

Now, the task of your agents is to find the best water wells and occupy
the best zones of Mars. Sometimes they have to sabotage their rivals to
achieve their goal (while the opponents will most probably do the same) or
to defend themselves. Of course the agents’ vehicle pool contains specific
vehicles. Some of them have special sensors, some are faster and some
have sabotage devices on board.

Last but not least, your team also contains special experts, e.g. the re-
pairer agents, that are capable of fixing agents that are disabled. In gen-
eral, each agent has special expert knowledge and is thus the only one
being able to perform a certain action. So your agents have to find ways
to cooperate and coordinate among them.

The environment’s topology is constituted by a weighted graph. Each vertex
has a unique identifier and a number that indicates its value. Each edge has a
number that represents the costs of moving from one of its vertices to the other.
These vertex-values are crucial for calculating the values of zones. A zone is a
subgraph that is covered by a team of agents according to a coloring algorithm
that is based on a domination principle.

Several agents can stand on a single vertex. If a set of agents dominates such a
vertex, the vertex gets the color of the dominating team. A previously uncolored
vertex that has a majority of neighbors (at least 2) with a specific color, inherits
this color as well. Finally, if the overall graph contains a colored subgraph that
constitutes a frontier or border, all the nodes that are inside this border are
colored as well. This means that agents can color or cover a subgraph that has
more vertices than the overall number of agents. Figure 1 shows a screenshot of
a relatively small map, depicting, amongst other things, the graph coloring.

Before elaborating on the agent roles we have to specify the effectoric capa-
bilities of the agents. Each agent, or vehicle, has a state that is defined by its
position on the map, its current energy available for executing actions and its
current health. On top of that, each team has a budget for equipping the vehicles
during the simulation. These actions8 are defined by the scenario:

– skip is the noop-action, which does not change the state of the environment,

8 Of course, all the actions that cost energy will fail if the vehicle under consideration
does not have enough energy.



Fig. 1. A screenshot of the agents on Mars scenario.

– recharge increases the current energy of a vehicle by a fixed factor and can
be performed at any time without costs,

– attack decreases the health of an opponent, standing on the same vertex, if
successfully executed and decreases the current energy of the attacker,

– parry parries an attack and decreases the energy of the defending agent,
– goto moves the vehicle to a neighboring vertex while decreasing its energy

by the weight of the traversed edge,
– probe yields the exact value of the vertex the vehicle is standing on and

decreases the probing vehicle’s energy,
– survey yields the exact weights of visible edges while decreasing the energy,
– inspect costs energy and yields the internals of all visible opponents,
– buy equips the vehicle with new components, which increase its performance,

and cost money, and
– repair repairs a teammate, which again costs energy.

We have defined five different roles. Each team consists of four vehicles for
each role, that is a total of twenty vehicles per team. This number increased
from the 2011 edition, where teams were composed by 2 vehicles for each role,
totaling 10 vehicles. Each role defines the vehicle’s internals and its capabilities.
The roles differ with respect to energy, health, strength and visibility range. The
effectoric capabilities are as follows:

– explorer can skip, move to a vertex, probe a vertex, survey visible edges,
buy equipment and recharge its energy,



– repairer can skip, move to a vertex, parry an attack, survey visible edges,
buy equipment, repair a teammate and recharge its energy,

– saboteur can skip, move to a vertex, parry an attack, survey visible edges,
buy equipment, attack an opponent and recharge its energy,

– sentinel can skip, move to a vertex, parry an attack, survey visible edges,
buy equipment and recharge its energy,

– inspector can skip, move to a vertex, inspect visible opponents, survey
visible edges, buy equipment and recharge its energy.

Achievements are tasks that, if fulfilled, contribute to the teams’ budgets. We
have defined a set of achievements that includes having zones with fixed values,
inspecting a specific number of vehicles, probing a number of vertices, surveying
a fixed number of edges and successfully performing and parrying a number of
attacks.

In each step, each vehicle is provided with its currently available percepts:

– the state of the simulation, i.e. the current step,

– the state of the team, i.e. the current scores and money,

– the state of itself, i.e. its internals,

– all visible vertices, i.e. identifier and team,

– all visible edges, i.e. their vertices’ identifiers,

– all visible vehicles, i.e. their identifier, vertices and team,

– probed vertices, i.e. their identifier and values,

– surveyed edges, i.e. their vertices’ identifiers and weights, and

– inspected vehicles, i.e. their identifiers, vertices, teams and internals.

After sending percepts, the server grants some time for deliberation. After
that the new state is computed. The simulation state transition is as follows:

1. collect all actions from the agents,

2. let each action fail with a specific probability,

3. execute all remaining attack and parry actions,

4. determine disabled agents,

5. execute all remaining actions,

6. prepare percepts,

7. deliver the percepts.

The introduction of the agents on Mars scenario was also accompanied by the
release of an environment interface that has been developed to be compatible
with the environment interface standard [7]. This standard allows Java based
problem solving approaches to make use of a jar-file provided by the organizers
that facilitated connecting to and communicating with the MASSim server. This
is done my mapping the whole communication to Java-method invocations and
callbacks.



2.2 Changes and Modifications to the Scenario from 2011

As already mentioned, we increased the number of agents to 20 and provided
them with more energy. This results in less recharging and gives them more
freedom: in 2011, recharge was by far the most used action.

The visualisation was improved a lot (zones as well as high-valued vertices
are highlighted, costs of the edges are depicted by their thickness. The last
action from an agent at each vertex is illustrated: (1) green circle: successful
sense action (probe, survey, inspect), (2) red circle: last action failed, (3) yellow
star: successful attack, (4) indigo star: successful parry, (5) pink star: successful
repair, and (6) crossed out: disabled.

Agents are now getting feedback as to why their actions failed (if they did).
The (automatic) generation of maps has been improved (a map contains now
several centers).

3 The Tournament

During past editions of the Contest, stability (i.e., the capacity to send actions to
the MASSim server in time) was a big problem for some teams. It also affected
the overall quality of the Contest and the possibility to draw conclusions about
the strategies by looking at the results. To address this, we decided for the
2012 edition to implement a qualification round, in which teams were required
to show that they were able to maintain good stability (i.e. timeout-rates below
5%) during a round of test matches. Only then they were allowed to take part
in the tournament.

3.1 Participants and Results

Nine teams from all around the world registered for the Contest. Seven of them
were able to pass the qualification round and took part in the tournament (see
Table 1). Full introductions of the teams can be found in [12] and in the papers
included in this volume.

Team Affiliation Platform/Language

AiWYX Sun Yat-Sen University, China C++
PGIM Islamic Azad University of Malayer, Iran Prometheus, JACK
LTI-USP University of Sao Paulo, Brazil Jason, CArtAgO, Moise
SMADAS-UFSC Federal University of Santa Catarina, Brazil Jason
Python-DTU Technical University of Denmark Python
Streett - , USA Java
TUB TU Berlin, Germany JIAC

Table 1. Participants of the 2012 edition.

Team AiWYX was a single-developer team from Sun Yat-Sen Univerity,
China. The agents were developed in C++, using no agent-specific technolo-
gies. The approach used is centralized, where one agent gets all the percepts
from the other agents and makes the decisions for the whole team.



Team PGIM comes from the Islamic Azad University of Malayer, Iran. The 3
developers used agent-specific technologies for developing their team: Prometheus,
JACK. Nevertheless the team organization is not distributed, and agents broad-
cast their percepts.

Team LTI-USP from University of Sao Paulo, Brazil had three developers.
Agents were implemented using Jason, CArtAgO and Moise. There is one agent
that determines the best strategy, but each agent has its own thread, with its
own beliefs, desires and intentions. Agents broadcast new percepts, but commu-
nication load decreases over time.

Team SMADAS-UFSC is from Federal University of Santa Catarina, Brazil.
It had six team members. The language of choice for agent development was
Jason. Besides normal agent-communication provided by Jason, agents shared a
common data-structure (blackboard) for storing the graph topology.

Team Python-DTU from the Technical University of Denmark is a regular
contender of the Multi-Agent Programming Contest. For this edition it registered
6 members. As team’s name suggest, Python was the language of choice. The
agents follow a decentralized approach, where coordination is achieved through
distributed algorithms, e.g. for auction-based agreement.

Team Streett was composed by a single independent developer from the USA.
Agents were developed in Java, based on the sample agents provided with the
MASSim platform. Agents shared only vital information and coordination was
achieved by sharing location data.

Team TUB, TU Berlin, Germany, is another regular contender of the Multi-
Agent Programming Contest, that presented for this edition as a single-developer
team. The agents are developed in the JIAC platform (which won the contest
several times in previous years).

The tournament took place from 10th to 12th September 2012. Each day
each team played against two other teams so that in the end all teams played
against all others. We started the tournament each morning at 10 am and finished
at around 3 pm. A match between two teams consisted of 3 simulations only
differing in the size of the graph. For a win the team got 3 points and for a draw
1 point. The results of this year’s Contest are shown in Table 2.

Pos. Team Score Difference Points

1 SMADAS-UFSC 2778057 : 1043023 1735034 51
2 Python-DTU 2738397 : 1095251 1643146 48
3 TUB 2090849 : 1600914 489935 30
4 LTI-USP 1627177 : 1845601 -218424 27
5 AiWYX 2301358 : 1526768 774590 24
6 PGIM 1130432 : 2047735 -917303 9
7 Streett 192694 : 3699672 -3506978 0

Table 2. Results.

Two teams, SMADAS-UFSC and Python-DTU, stood out from the rest and
the tournament winner was decided by the match that confronted them, during
the second day of the competition. SMADAS-UFSC won two of three simulations



of that match and was crowned champion, leaving Python-DTU as runner-up for
the second consecutive year. Both teams won all the matches they played against
the rest of the teams without losing any simulations. The mid-table teams TUB,
LTI-USP and AiWYX where relatively close while playing against each other.
They could not catch up with the first two teams but clearly differentiated from
the last two.

Thanks to the qualification round (as well as the optional test matches of-
fered before it), there were no stability issues during the Contest. This was a
great improvement compared to previous editions. Although some of the teams
experimented a few crashes from time to time, the promptness of the develop-
ers to restart their agents ensured that the results of the simulation were not
affected by these isolated events.

3.2 Overview of the Teams’ Strategies

In this section we collect a few facts about the participating teams. For more
detailed information we refer to the articles in these proceedings.

SMADAS: The winner of this years contest, from Brazil, used Jason, a ded-
icated MAS programming language. For some algorithms, Java was used
to implement them, rather than Jason. The development needed 500 per-
son hours distributed among 6 people. They used 7900 lines of code, 2400
of which were written in Java. Communication with the server was done
through the EISMASSIM interface.

The system is decentralized. Agents were executed on the same machine
to use shared memory (blackboard programming). But updating the black-
board was computationally difficult and thus could only be done every 3
steps.

The strategy was first to explore the map, find the best potential zones (high
values) and then to conquer and defend them. An interesting idea was to
make the opponents spend their money using a special agent: Hulk. If the
team detects that there is no particular buying strategy, then the Hulk agent
changes its behaviour.

They claim that the good performance is based on the various strategies
that make the team very flexible against different opponents. Defending of
the zones can still be improved.

Python-DTU: The danish team ended as runner-up for the second time in
a row. The team did not use a dedicated platform or MAS programming
language. They choose Python for efficiency and to have complete control
over all features in the implementation. However, the team used the organi-
zational model of Moise.

The solution they implemented is decentralized and heavily based on commu-
nications between the agents and on an auction-based agreement algorithm.
They invested 300 person hours distributed among 6 people. 1500 lines of
codes were written.



The strategy is based on dividing the game in three phases: randomly trying
for achievements in the first phase, taking control of high valued areas and
sending out explorers in the second phase, and trying to expand in the third
phase.
The team claims that their buying algorithm has been detected in the qual-
ification phase and a clever counter strategy was developed by another team
that eventually led to the defeat.

TUB: The german team TUB, winner of several contests in the past, entered
the contest for the 4th time (but with different team members). They use a
centralized approach where agents share all their perceptions and intentions.
It required 640 person hours (and 8000 lines of code)
First the agents probe and survey the whole graph. Explorers, attackers,
repairers and inspectors only contribute to the zoning algorithm, if they
have done their dedicated tasks. The team tries to find a balance between
zoning and achievements points.
The team claims that they did not foresee very aggressive playing methods
and that this led to several lost games.

LTI-USP: The motivation of the second brazilian team, (one professor and 2
students without previous experience in this scenario, was to test the Ja-
CaMo framework (CArtAgO, Jason and Moise). They used a centralized
approach for coordinating the agents and communication via speech-acts.
300 person-hours were invested and 3000 lines of code (a third in AgentS-
peak, the rest in Java) were written.
The strategy was not to divide the game into phases but the agents into
three subgroups: two for occupying zones and one for sabotaging the enemy.
Communication with the server was through the EISMASSIM interface. The
repairer agents stay where they are and wait until damaged agents come and
see them. The sentinels always parry when an opponent saboteur is there
and the own saboteurs always attack opponents in the same vertex.
No defense strategy has been implemented and the team claims that this
was responsible for not doing better in the contest (zones were instable).

AiWYX: The chinese team consisted of just one person, a bachelor of sci-
ence. He has a background in knowledge representation, game theories and
distributed algorithms and used just plain C++. He invested ca. 250 person-
hours and wrote 10000 lines of code. No agent programming technology was
used at all, the system was centralized, all agents share their knowledge to
build the map.
The strategy is to first go for areas where nobody else is and trying to
expand them. If enemies attack, the agents draw back and look for better
zones rather than attacking the enemies. Agents can dynamically change
their behaviour at run-time. A big problem was that the agents did not
attack the enemy team and that attacks from the enemy were not parried in
a suitable way which resulted in instability of the zones.

PGIM: The iranian team consisted of one scientist and three students. They
invested 8000 person-hours in total, using 7000 lines of code, to develop a
decentralized system. After careful evaluation they chose Prometheus and



Jack. Due to licensing problems, they could not use Jack and had to redo all
in Java. Due to some misunderstanding of the scenario, they chose to first
attack and destroy the opponents repairer agent, then to attack other agents
and only in the third place to consider building zones.
Instability of the zones and not being able to conquer zones of some value
were the main drawbacks.

Streett: This team consisted of an american student who, unfortunately, did
not provide us with any information about his team.

4 Interesting Simulations

In this section we analyse three of the most interesting games using our newly
developed statistics module. This involves analysing the following charts: (1)
summed-up scores, (2) zone scores and achievement scores, (3) zone stabilities.

The summed-up score consists of the achievement-score plus the zone-score.
Note that the achievement score decreases, when the buy action is executed.

summed-up scores: This chart depicts the summed-up score of each team in
each step of the current simulation.

zone scores and achievement scores: This chart combines the charts for
the step-score (zone-scores + achievement-scores) and the achievement-scores.
The zone-score derives from the number and value of the currently domi-
nated nodes, while the achievement score sums up (across all categories) all
the achievements so far.

zone stabilities: This chart depicts the zone stabilities of each team in each
step of the current simulation. The zone stability increases for one team, if
the team can hold all conquered nodes over a longer period of time. If nodes
are lost, the value decreases. The exact computation is as follows: For each
node that is dominated by a team in a certain step the counter is increased
by one. If the team does not dominate the node anymore the counter is reset.
The overall zone stability is then the sum of all node counter values.

4.1 SMADAS-UFSC vs. Python-DTU – Simulation 1

The first simulation of the match between SMADAS-UFSC and Python-DTU
was a close victory for the winners of the contest, by 127.546 to 121.312. The
complete visualization of the simulation can be downloaded from our webpage
9. Both teams started even, with a very small edge to Python-DTU in the first
few steps. Then, SMADAS-UFSC took over from step 35 until step 259. Python-
DTU managed to recover the lead at that point for around 50 steps but with no
considerable difference. Finally, SMADAS-UFSC took over again from step 309
until the end of the simulation, with a tendency to further increase the score
difference. Figure 2, which shows the summed scores at each step, presents this
visually.

9 http://www.multiagentcontest.org/downloads?func=fileinfo&id=1133

http://www.multiagentcontest.org/downloads?func=fileinfo&id=1133


Fig. 2. SMADAS-UFSC vs. Python-DTU
(Sim 1): Summed scores.

Fig. 3. SMADAS-UFSC vs. Python-DTU
(Sim 1): Step-scores and Achievement
points.

Figure 3 shows the step-score at each step (i.e., the value of the zone plus
the unused achievement points at each step). To better display how the score is
composed, also the unused achievement points at each step are displayed in the
figure. Changes in step-score suggest that both teams attempted to conquer dif-
ferentiated overlapping zones, as both teams maintained their zone value always
above a relatively high minimum, but at several points in the graph the increase
in the score for one team is correlated with a decrease in the opponent’s score.

Achievements and Buying Strategy Also from Figure 3 it becomes clear
that the difference in achievement points is much more significant than the dif-
ference in the total score. Even though Python-DTU had more valuable zones
during most steps of the simulation, SMADAS-UFSC earned more points per
step because of achievement points. The buying strategy proved to be crucial: the
clever strategy implemented by SMADAS-UFSC, which consisted in buying im-
provements for only one of their saboteurs in an attempt to drive the other teams
to spend more achievement points in more agents, worked perfectly in this case.
Both teams earned the same number of achievements points: 68. But Python-
DTU spent 48 of those points improving the saboteurs, whereas SMADAS-UFSC
only used 16 for improving one of theirs. This meant a difference that at the end
of the match was of 32 extra points per step for SMADAS-UFSC with little
variations after step 350, which was not easily compensated by the zone-score.
A point to remark here is that doubling the number of agents per team with re-
gards to the previous edition of the Multi-Agent Programming Contest increased
the efficacy of this strategy.

It is worth noticing that, while SMADAS-UFSC attempted to start their
buying strategy as early as possible (and also to earn as many achievements as
early as possible), Python-DTU’s approach was to compensate for the aggressive
buying strategy by delaying the first round of buys until step 150. Half of the
16 achievement points spent by SMADAS-UFSC were spent before step 10.



Their strategy also attempted to detect whether the other time was buying
improvements to limit their own buys, and that explains the later buys at step
175.

Nevertheless, even when in general the buying strategy played in favor of
UFSC-SMADAS, there seems to be a correlation between the first bulk of buys
for Python-DTU at step 150 and an increase in their step scores. On the other
hand, at that point of the simulation both teams were still scattered on the map
and had not yet committed to defend a certain area.

Fig. 4. SMADAS-UFSC vs. Python-DTU (Sim 1): Zones’ Stability.

Zone Stability The zone-stability10 graph in Figure 4 reaffirms the idea of
overlapping but differentiated zones. Both teams’ zone-stability have a clear
tendency towards increasing, which means that a number of nodes remain un-
challenged. At the same time, none of the zone-stability lines is smooth, which
means that several nodes were being lost and recovered during simulation.

Two examples of area domination, one for each team, are presented in Figures
5 and 6. In Figure 5, at step 338 the value of the zone for Python-DTU was 223
and 140 for SMADAS-UFSC. In Figure 6, at step 417 those were respectively
160 and 219.

Actions per Role

10 The zone- stability is a measure that increases when a team keeps dominance of
a node, without taking into account the values of the nodes. It was designed for
post-match analysis only, as it is not used for computing the scores.



Fig. 5. SMADAS-UFSC vs. Python-DTU
(Sim 1): Simulation after 338 steps.

Fig. 6. SMADAS-UFSC vs. Python-DTU
(Sim 1): Simulation after 417 steps.

SMADAS-UFSC. SMADAS-UFSC’s Explorers used the recharge action the
most, 55 percent of the times, followed by the goto action (35 percent). The
probe action was used 303 times (10 percent), 302 of which were successful even
though the map had only 300 vertices. The survey action was only used 16 times
(less than 1 percent). The Sentinels executed the recharge action half of the
times, followed by the goto action (38 percent). They also used the parry action
10 percent of the times and the survey action only 2 percent. The Saboteurs were
quite aggressive, using the attack action in 51 percent of all cases (85 percent
of the attacks were successful). The recharge action was used 32 percent of the
times, And the goto action in only 16 percent of the cases, meaning they were
somehow static. The survey action was also only used in less than 1 percent of
the times (18) and the buy action, as mentioned before, was used 8 times. The
Repairers executed goto, recharge and repair close to a third of the times
each (39 percent, 30 percent, and 28 percent respectively). They also chose the
survey action and the parry action around 1 percent of the times each. Finally,
the Inspectors used mainly the recharge action (58 percent) followed by the
goto action (38 percent). The survey action was used only 63 times (2 percent)
and the inspect action even less, 33 times (1 percent).

Python-DTU. The Explorers from Python-DTU used the recharge action ex-
tensively, 75 percent of the times. The goto action, in contrast, was used 15
percent of the times. The probe action was used on 305 occasions (10 percent),
of which 300 were successful (the number of vertices on the map). The survey

action was used only in two occasions. The Sentinels also used the recharge

action 75 percent the times. It was followed by the parry action, 13 percent of
the times, although less than half of the parries were successful. They used the
goto action even less than the Explorers, only 8 percent of the times. They also



used the survey action 5 percent of the times. The Saboteurs used the attack

action 38 percent of the times (76 percent of the attacks were successful). The
recharge and goto actions were used 30 percent of the times each. The buy ac-
tion was used 24 times. They used the survey action only once. The Repairers
executed the goto action 35 percent of the times and the repair action 34 per-
cent. The third choice was the recharge action, 26 percent of the times. They
opted for the parry action 83 times (3 percent, less than half of the parries were
successful) and for the survey action 36 times (1 percent). Finally, the Inspec-
tors used the recharge action the most (67 percent). They used the inspect

action much more than they rivals (24 percent) and the goto action much less
(9 percent). They only surveyed in 4 occasions.

4.2 SMADAS-UFSC vs. Python-DTU – Simulation 2

The second simulation of the match between the winners and runner-ups of the
contest was won by the latter, by an even closer score of 120.450 to 115.076.
Thus Python-DTU maintained the lead during the whole simulation, although
SMADAS-UFSC reduced that difference to just 2.474 points at step 578. This
is shown in Figure 7. The complete visualization of the simulation can be down-
loaded at our webpage 11.

Fig. 7. SMADAS-UFSC vs. Python-DTU
(Sim 2): Summed scores.

Fig. 8. SMADAS-UFSC vs. Python-DTU
(Sim 2): Step-scores and Achievement
points.

Zone Scores and Stability Figure 8 presents the Step-scores and achievement
points at each step of simulation 2. In spite of the two high peaks in the score
for SMADAS-UFSC, the advantage for Python-DTU was clear during most of
the simulation.

11 http://www.multiagentcontest.org/downloads?func=fileinfo&id=1120

http://www.multiagentcontest.org/downloads?func=fileinfo&id=1120


Fig. 9. SMADAS-UFSC vs. Python-DTU
(Sim 2): Simulation after 362 steps.

Fig. 10. SMADAS-UFSC vs. Python-
DTU (Sim 2): Simulation after 481 steps.

The map in this simulation has different characteristics compared to the first
simulation: The most valuable nodes were scattered towards the outer edges of
the graph. A clear pattern of which zones each team would attempt to dominate
and keep, did not emerge until around step 250. Two different moments during
the simulation are presented in Figure 9, at step 362, where the value of the
zone for Python-DTU was 176 and 64 for SMADAS-UFSC; and in Figure 10, at
step 481, where the values were 172 and 243 respectively. Both figures exemplify
what happened during the game, once the teams settled for a region of the map:
Python-DTU conquered two zones far away from each other, and although those
zones were not very big, they were very stable: In fact, one of the two remained
practically unchanged during most of the simulation.

Fig. 11. SMADAS-UFSC vs. Python-DTU (Sim 2): Zones’ Stability.



SMADAS-UFSC, on the other hand, managed to build the biggest and most
valuable zone by isolating the bottom of the map. However, this was an un-
stable zone that they were not able to keep for a very long time. Furthermore,
SMADAS-UFSC’s agents were not standing on the most valuable nodes of that
zone, so whenever the zone collapsed, those nodes were lost and thus the zone-
score decreased significantly.

Figure 11 shows this difference with respect to zone-stability for each team.
As zone-stability takes into account the number of nodes in the zones, the two
peaks in the zone-score of SMADAS-UFSC are also slightly reflected in the
zone-stability graph. Nevertheless, zone-stability for Python-DTU is still much
higher.

Achievements and buying strategy During the second simulation, the buy-
ing strategy applied was the same as during the first one. This time, SMADAS-
UFSC earned 68 achievement points and spent 14, whereas Python-DTU earned
66 and used 40. Nonetheless, as it can be seen in Figure 8, during this simu-
lation the difference in achievement-points was not enough to compensate the
difference in the zone-scores.

Actions per Role

SMADAS-UFSC. The Explorers of team SMADAS-UFSC used the recharge

action in 61 percent of all cases, followed by goto (31 percent) and probe (8
percent). The survey action was only executed 10 times and the buy action was
not used at all. Also, the Sentinels spend a lot of their time for recharging, i.e.,
the recharge action was used in 60 percent of all cases. Additionally, the main
actions for this role were the goto action (31 percent) and the parry action
(7 percent / 5 percent successful). Although the intended main purpose of the
sentinel was to be used for surveying the edges the survey action was just used
in 2 percent of the cases. Probably, because of the high visibility range of this
role together with the information of the other roles these few executions were
still enough. Finally, this type of agent did not buy anything. The behaviour
of the Saboteurs was implemented in the following way. The attack command
was executed 1302 times, i.e., in 43 percent of all cases, and was almost always
successful (1123 times or 37 percent). The recharge action (37 percent) and
the goto action (19 percent) were the second and third most used actions. The
survey (25 times) and buy (7 times) action were only used sometimes, however
the buy action was only used by this particular role. The main purpose of the
Repairers was to go to some agents and repair them, therefore the goto (37
percent), the recharge (34 percent), and the repair (26 percent) action were
used most often. The survey action was executed 42 times and the parry action
37 times (out of that 21 were successful). This is a huge difference to the Python-
DTU Repairer that parried just one attack. Lastly, the Inspectors used mainly
the recharge (72 percent) and goto action (25 percent). The survey action was
used 53 times and inspect 20 times.



Python-DTU. The Explorers of team Python-DTU however used the recharge

action extensively (more than 75 percent of all cases), followed by the goto action
(14 percent) and probe action (8 percent). The survey and buy action were
never used. The Sentinels executed the recharge action quite often (62 percent),
followed by the parry (18 percent in total, but only 6 percent successful) and
the goto action (12 percent). The survey action (7 percent) was only used
seldom. The buy action was not used at all. The Saboteurs used the attack

action in 39 percent of the cases. 33 percent were successful. A little bit less was
the recharge action executed (33 percent in total / 30 percent successful). The
goto action was applied in 27 out of hundred times. Additionally, this agent was
the only one using the buy action. The action was used exactly 20 times, i.e.,
in 0.67 percent of the cases. Finally, the agent did not use the survey action
once. The Repairers executed goto in 38 of the cases, followed by the repair

(28 percent) and recharge action (33 percent in total / 31 percent successful).
The survey action was used 17 times, the parry action just three times (out of
that only one was successful) and the buy action was never executed. Finally, the
Inspectors used mainly the recharge action (83 percent), followed by inspect

(11 percent) and goto (5 percent). The survey action was executed 5 times and
buy was never used.

4.3 PGIM vs. AiWYX – Simulation 1

The team AiWYX clearly won all simulations against PGIM . While the first
simulation ended 81562 to 212016, the second resulted in 68748 to 107600 and
the last in 75846 to 112466. The final position of AiWYX was 5 and PGIM got
the 6th place.

Fig. 12. PGIM vs. AiWYX (Sim 1):
Summed scores.

Fig. 13. PGIM vs. AiWYX (Sim 1): Step-
scores and Achievement points.

During the beginning of the match both teams were at the same level. At
step 170 AiWYX conquered an area of more than 640 nodes but was not able to



keep it for a longer period (cf. Figure 14). At step 312 AiWYX finally stabilized
its zone(s) (cf. Figure 16 and 15). The team PGIM , however, was not able to
conquer zones larger as 160 nodes and got therefore only the achievement for
holding 80 nodes at the same time.

AiWYX used a novel strategy (not seen in the competition so far) for building
zones: Instead of trying to conquer a small zone, probing the nodes in order to
increase the value of the zone and finally defending, the team was positioning
itself around an opponent’s zone and thereby isolating the opponents zone from
the rest of the graph. Figure 14 shows such a zone. At step 312 AiWYX finally
stabilized its zone(s) (cf. Figure 15 and 16). As one can see this resulted in very
large zones, basically containing all nodes the opponents did not conquer.

Nevertheless due to the lack of probing all conquered nodes the team Ai-
WYX did not score all possible points but only a small subset. Additionally,
the strategy was highly depending on the size of the map and more effective on
larger maps. That is probably the reason why the team AiWYX scored the most
points per simulation but did not reach a better place in the competition.

Fig. 14. Simulation after 170 steps. Fig. 15. Simulation after 312 steps.

The complete visualization of the simulation can be downloaded from our
webpage 12. In the following, we will discuss this simulation in more detail.

Scores The evolution of the zone scores and achievement points are depicted
in Figure 13. While the development of the achievement points is similar (both
teams did not invest the points for agent improvements), the flows of the zone
scores are different. From step 0 to 300 it was a head to head competition but

12 http://www.multiagentcontest.org/downloads?func=fileinfo&id=1148

http://www.multiagentcontest.org/downloads?func=fileinfo&id=1148


after step 312 AiWYX was able to occupy a large zone and PGIM was not able
to increase its zone score anymore.

Zone Stability The zone stability of team PGIM was low, i.e., under 500
points per step. In contrast, the zone stability of AiWYX was quite good and
was almost always higher than that for PGIM . This is one reason why the team
AiWYX won the match.

Fig. 16. PGIM vs. AiWYX (Sim 1): Zones’ Stability

Achievements The team AiWYX conquered a zone with an impressive value
of 640 points, attacked 640 times the opponents successfully, probed 160 nodes,
and surveyed 640 edges. Additionally, It inspected 20 times an opponent. An
interesting fact is that the agents did not try to parry an attack.

The team PGIM made the following highest achievements: It conquered an
area of 80 nodes, attacked 320 successfully, probed 80 nodes and surveyed 640
edges. It inspected 10 times an opponent and parried 40 times attacks success-
fully.

Actions per Role

AiWYX. The Explorers of team AiWYX used the recharge action extensively
(more than 50 percent of all cases), followed by the goto action (35 percent) and
probe action (10 percent). The survey action was just used in just 1.7 percent.
The Sentinels executed the recharge action quite often (53 percent), followed by
the goto action (32 percent) and the survey action (4 percent). The Saboteurs
used the goto action in 42 percent of the cases, followed by the attack (35
percent) and recharge action (22 percent). The Repairers executed goto in 54



the cases, followed by the repair (26 percent) and recharge action (18 percent).
Finally, the Inspectors used mainly the goto (41 percent) and recharge action
(56 percent). The inspect was just used 18 times (0.6 percent). survey was
executed in 1.73 percent of the cases.

PGIM. The Explorers of team PGIM however used the goto action in 56 percent
of all cases. 19 percent of the time they executed the skip action which does not
have an effect. It would be more efficient to use the recharge action instead.
This action was used in 11 percent of the cases. Finally, probe and survey were
executed 8 and 5 percent of the times. The behaviour of the Sentinels was not
optimal. The skip action was the most often used action (49 percent) followed
by a goto command (37 percent). parry (2 percent), survey (4 percent), and
recharge (8 percent) were just used seldom. Also the behaviour of the Saboteurs
was not implemented in a good way. The skip action was used 1304 times, i.e., 43
percent of all cases although a recharge (13 percent) would be more efficient.
The goto action was executed in 27 percent of all cases, followed by survey

(3 percent) and attack (14 percent). For the Repairers the goto action was
the main action (48 percent). This was followed by the repair (18 percent)
and recharge action (21 percent). The skip action was executed 296 times,
that corresponds to 10 percent. survey was used 84 times, i.e., 2,8 percent.
The Inspectors used mainly the goto action (55 percent), followed by skip (26
percent) while recharge (14 percent) would be the better option. survey was
used in 4 percent of the cases and inspect just 21 times (0,7 percent).

5 Summary, Conclusion and Future of the Contest

This paper provides an overview of the most recent edition of the Multi-Agent
Programming Contest. We have introduced the Contest in general, and we elab-
orated on the current scenario in a more detailed way. We have also introduced
the teams that took part and evaluated their performance. We compared three of
the more interesting matches using our new visualisation and statistics modules.

This is our third newly designed scenario that we will also use, with some
modifications and lessons learned from the 2012 edition, for the Contest in 2013.
It is time to lean back and consider what we have achieved so far. What con-
clusions (if any) can we draw from the “Agents on Mars” scenario? Can we
observe some trends in the quality of the teams? What is the impact on the Pro-
MAS community? While these are critical and difficult questions that might be
answered differently by different people, we collect a few observations that we
consider relevant.

– Both times a dedicated Multi-Agent Programming Language/Platform won,
but runner-up was Python-DTU, which did not use a dedicated platform,
but was inspired by MAS technology.
Nevertheless, other examples (e.g., the teams ranked 5–7 in this years edi-
tion) show that ad hoc implementations seem to perform worse than MAS
inspired systems.



– The introduction of a qualification round increased the stability of the teams
and therefore the whole contest a lot. This feature will be kept.

– Teams performing for the second time usually perform better. But the win-
ners were both first time participants.

– The contest helped a lot to find bugs in the used platforms. This is an
observation we made throughout the history of the contest. So it seems the
scenario is demanding and most features of the used platform/language are
indeed used (so that potential bugs surface). One team participated exactly
because of this reason (testing their platform).

– We usually end up with as few as 7 to 9 teams that seriously want to par-
ticipate. We believe this number could be much higher and does not really
show a great impact on our community. On the other hand we have quite a
variation: it is not always the same participants. Over the last 3 years, we
had 20 different teams participating.

– The overall performance of the teams improved a lot with each new contest,
although we increased the complexity considerably (size of the map, number
of agents, difficulty of the task).

– Compared with the cows and cowboys scenario, we see much more coopera-
tion among the agents, more dynamic behaviour, and a lot more interaction
with the opposing team. In addition, the data to be handled (observing the
environment, messages between the agents) has also increased a lot. While
we have not yet excluded centralized approaches, the sheer amount of data
makes it difficult for the systems to provide each agent with the central
memory of the whole system.
Also, in the current scenario, the computational costs of Dijkstra’s algorithm
is high so that it is not feasible for all agents to execute it at the same time.

– In the current scenario, there are indications that buying health and strength
is much more important than investing the money for other reasons. Thus
it may pay off to find a more balanced scenario that allows for more diverse
strategies of the teams. This point makes us reconsider the precise values of
the different parameter we have in our scenario.

The amount of work that went into implementing a team varied from one
person with 250 person-hours to 6 people with 800 person hours and from 1500
to 10000 lines of code (the latter because no dedicated technology was used,
interestingly, that was done by one single person).

It would be interesting to assess if it would be beneficial to steer the Contest
into a more specialized direction in order to strengthen its niche in the research
ecology. This includes but is not limited to focusing on the planning aspect
of the competition, leaving behind path planning as the main facet of agent
deliberation.

We could also focus on using a massive number of agents: lots of agents with
different roles and thus different capabilities. This would allow us to take into
account the scalability of agent-oriented programming platforms.

Additionally it would be worthwhile to focus on agent communication and
to evaluate that aspect of the tournament by routing agent-messages through
the MASSim server for proper evaluation.



Last but not least, the most important part of the contest are the contestants:
We hope to attract more teams in the future — the contest is an excellent
opportunity for a student project on Bachelor or Master level.

References

1. T. Behrens, M. Dastani, J. Dix, M. Köster, and P. Novák, editors. Special Issue
about Multi-Agent-Contest, volume 59 of Annals of Mathematics and Artificial
Intelligence. Springer, Netherlands, 2010.

2. Tristan Behrens, Mehdi Dastani, Jürgen Dix, Jomi Hübner, Michael Köster, Pe-
ter Novk, and Federico Schlesinger. The multi-agent programming contest. AI
Magazine, to appear, 2013.

3. Tristan Behrens, Mehdi Dastani, Jürgen Dix, and Peter Novák. Agent contest
competition - 4th edition. In Proceedings of Sixth international Workshop on Pro-
gramming Multi-Agent Systems, ProMAS’08, volume 5442 of LNAI. Springer, 2008.

4. Tristan Behrens, Mehdi Dastani, Jürgen Dix, and Peter Novák. Agent contest
competition: 4th edition. In Koen V. Hindriks, Alexander Pokahr, and Sebastian
Sardiña, editors, Programming Multi-Agent Systems, 6th International Workshop
(ProMAS 2008), volume 5442 of Lecture Notes in Computer Science, pages 211–
222. Springer, 2009.

5. Tristan Behrens, Jürgen Dix, Jomi Hübner, Michael Köster, and Federico
Schlesinger. MAPC 2011 Documentation. Technical Report IfI-12-01, Clausthal
University of Technology, December 2012.

6. Tristan Behrens, Jürgen Dix, Jomi Hübner, Michael Köster, and Federico
Schlesinger. MAPC 2011 Evaluation and Team Descriptions. Technical Report
IfI-12-02, Clausthal University of Technology, December 2012.

7. Tristan Behrens, Koen Hindriks, and Jürgen Dix. Towards an environment inter-
face standard for agent platforms. Annals of Mathematics and Artificial Intelli-
gence, 61:3–38, 2011.

8. Tristan Behrens, Michael Köster, Federico Schlesinger, Jürgen Dix, and Jomi
Hübner.

9. Mehdi Dastani, Jürgen Dix, and Peter Novák. The first contest on multi-agent
systems based on computational logic. In Francesca Toni and Paolo Torroni, ed-
itors, Computational Logic in Multi-Agent Systems, 6th International Workshop,
CLIMA VI, volume 3900 of Lecture Notes in Computer Science, pages 373–384.
Springer, 2005.

10. Mehdi Dastani, Jürgen Dix, and Peter Novák. The second contest on multi-
agent systems based on computational logic. In Katsumi Inoue, Ken Satoh, and
Francesca Toni, editors, Computational Logic in Multi-Agent Systems, 7th Interna-
tional Workshop, CLIMA VII, volume 4371 of Lecture Notes on Computer Science,
pages 266–283. Springer, 2006.

11. Mehdi Dastani, Jürgen Dix, and Peter Novák. Agent contest competition - 3rd
edition. In M. Dastani, A. Ricci, A. El Fallah Seghrouchni, and M. Winikoff,
editors, Proceedings of ProMAS ’07, Revised Selected and Invited Papers, number
4908 in Lecture Notes in Artificial Intelligence, Honululu, US, 2008. Springer.

12. Michael Köster, Federico Schlesinger, and Jürgen Dix. MAPC 2012 Evaluation and
Team Descriptions. Technical Report IfI-13-01, Clausthal University of Technology,
jan 2013.


